XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
  Dialysis
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Nephrology Channel
subscribe to Nephrology newsletter

Latest Research : Nephrology

   DISCUSS   |   EMAIL   |   PRINT
LEA29Y (belatacept) effectively preserves kidneys during transplants
Feb 23, 2005, 20:04, Reviewed by: Dr.

"The studies with nonhuman primates were critical because, while we knew the co-stimulatory blocker was effective in vitro, we needed to study it in a living organism. The nonhuman primate studies allowed us to take a bold step toward studying this medication in humans to determine if it is a better choice than the current standard of care. Working with nonhuman primates enabled us to expedite the research process by four or five years"

 
Emory University physician-researchers in Atlanta have shown an investigational medication, known as LEA29Y (belatacept), is effective in preserving transplanted kidney function while at the same time avoiding the toxic side effects that are common in the currently used long-term, immunosuppressive transplant medications. The pre-clinical research conducted with nonhuman primates at the Yerkes National Primate Research center was an important step in establishing human clinical trials to develop an effective alternative to current anti-rejection therapies.

More than 23,000 organ transplants are performed each year in the United States. While current immunosuppressant medications have reduced the incidence of early organ failure following transplants, measures to prevent late failure and to halt other diseases that result from toxic side effects of current treatments have been limited.

Cyclosporine, the current standard of care following organ transplantation, prevents initial organ rejection by effectively blocking certain immune system pathways that are activated when the body detects foreign cells. At the same time, though, cyclosporine indiscriminately targets and blocks other cellular signal pathways, causing serious side effects such as high blood pressure and cholesterol, which may lead to cardiovascular disease, and high kidney toxicity that ultimately leads to long-term renal failure. In addition, long-term cyclosporine use damages the body's immune system and prevents it from fighting off other infections following transplant.

"For the past 20 years, transplant patients have been treated with cyclosporine-like medications that effectively suppressed the immune system to prevent the body from rejecting the new organ," said Christian Larsen, MD, DPhil, director of the Emory Transplant Center. "The problem is, the medication not only shuts down the immune system, but has side effects that increase the risk of heart attacks and can damage the kidney. We need to develop a medication as effective as cyclosporine in preventing initial rejection, while at the same time preserving the kidney and providing better patient outcomes."

Dr. Larsen and Thomas Pearson, MD, DPhil, with colleagues at Bristol-Myers Squibb Pharmaceutical Research Institute, developed LEA29Y to selectively block the second of two cellular signals (co-stimulatory signals) the body needs to trigger an immune response. Blocking this co-stimulatory signal prevents organ rejection while allowing the body to continue fighting other infections.

Following in vitro studies, during which the researchers observed LEA29Y was 10 times more effective than cyclosporine in blocking the co-stimulatory immune signal, Drs. Larsen and Pearson tested the drug in nonhuman primates and found that it significantly prolonged survival of transplanted kidneys.

"The studies with nonhuman primates were critical because, while we knew the co-stimulatory blocker was effective in vitro, we needed to study it in a living organism," said Dr. Larsen. "The nonhuman primate studies allowed us to take a bold step toward studying this medication in humans to determine if it is a better choice than the current standard of care. Working with nonhuman primates enabled us to expedite the research process by four or five years."

The research team recently completed a phase II clinical study comparing LEA29Y to cyclosporine in human kidney transplant patients. On behalf of investigators from 22 transplant centers worldwide. Dr. Larsen will present results from the phase II study at the annual American Transplant Congress May 20 � 25 in Seattle. Multiple phase III studies currently are being planned.
 

- Findings from one of the nonhuman primate studies appear in the March issue of the American Journal of Transplantation, which currently is online and appeared in print on February 21.
 

Emory University Health Sciences Center

 
Subscribe to Nephrology Newsletter
E-mail Address:

 

The Emory Transplant Center is one of the most advanced and comprehensive transplant centers in the Southeast. The center brings together Emory University's transplantation programs in heart, lung, liver, kidney, pancreas and islet. The center is committed to providing and improving care and access to those in need of organ transplantation, through full-service patient care and support services, as well as groundbreaking research to further the field of transplantation.

The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a recognized leader for its biomedical and behavioral studies with nonhuman primates, which provide a critical link between research with small laboratory animals and the clinical trials performed in humans. Yerkes researchers are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson's disease. Yerkes researchers also are leading programs to better understand the aging process, pioneer organ transplant procedures and provide safer drugs to organ transplant recipients, determine the behavioral effects of hormone replacement therapy, prevent early onset vision disorders and shed light on human behavioral evolution.

This research was supported by the National Institutes of Health, the National Science Foundation, the Carlos and Marguerite Mason Trust, the Livingston Foundation and Bristol-Myers Squibb.


Related Nephrology News

Kidney stones? Have some orange juice!!!
NOTCH2 gene mutations linked to Alagille syndrome
Fetal hydronephrosis mystery solved
Alport Syndrome: From Pathogenesis to a Potential Therapy
Meckel-Gruber syndrome gene identified- a help to understand polycystic kidney disease
Dialysis patients may be overmedicated
Mycophenolate mofetil may be more effective in inducing lupus nephritis remission
Dialysis patients often have close family members also on dialysis - Study
Prognosis Improving For Diabetics With End Stage Renal Disease
Osmolytes critical to survival of kidney cells


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us