XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38
Research Article
Public Library of Science (PloS) - Biology

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Why can't you tickle yourself!
Jan 18, 2006, 17:46, Reviewed by: Dr. Priya Saxena

"It's well-known that you can't tickle yourself. One explanation is that since all the sensations are completely predictable, we do 'sensory attenuation' which reduces our touch perception."

 
Anticipating our own touch - for example in tickling oneself - reduces its impact, says Queen's psychologist Dr. Randy Flanagan, a member of the university's Centre for Neuroscience Studies. This is evidence of an important human adaptation that helps us interact with objects in our environment.

An expert in eye/hand movement, Dr. Flanagan is part of an international team exploring sensory attenuation - the way that we filter out or "cancel" unnecessary information from the world around us.

Their study appears on-line today in the international journal Public Library of Science (PloS) - Biology. Led by Paul Bays of University College London, the team also includes Daniel Wolpert of Cambridge University.

"It's well-known that you can't tickle yourself," says Dr. Flanagan. "One explanation is that since all the sensations are completely predictable, we do 'sensory attenuation' which reduces our touch perception." Because people continually receive a barrage of sensory information, it's necessary to distinguish between what is caused by our own movements and what is due to changes in the outside world.

"If we try to deal with all the sensory information directed at us at any given time it's overwhelming," explains Dr. Flanagan. "We can't focus attention on crucial changes in our environment that aren't a function of our own motions." Animals in the wild, for example, use sensory cancellation when looking for prey and avoiding predators. They do this, in part, by blocking out changes in sensation that occur because of their own movements.

To study this phenomenon in humans, the research team used a task in which participants tapped, using one (active) index finger on a force sensor located just above the other (passive) index finger. A small motor delivered a tap to the passive finger that occurred at the same time as a tap of the active hand - which simulated tapping onto one's own finger through a solid object.

Previously the team had shown that people judge self-administered taps to be weaker than those not linked to their own motion.

On unexpected "catch" trials the force sensor was removed, so subjects didn't hit anything with the active finger. However, they still received a tap to the passive finger. And in these trials, attenuation or cancellation still occurred.

This suggests that sensory cancellation is based on predictive rather than "postdictive" mechanisms, the researchers say. In the catch trials, the brain predicts that a tap will occur and sensory cancellation takes place even though the active finger fails to deliver the tap.

"If sensory cancellation were postdictive and based on an analysis of sensory events after the tap, we would not expect cancellation in the catch trials," he explains. "The brain is constantly predicting the sensory feedback it's going to receive from our fingertips as we touch things in the world and act on that information."

Research has suggested that a breakdown in this predictive mechanism may underlie certain delusions in schizophrenia. If people fail to adequately filter sensory information arising from self-motion, they may erroneously attribute it to external causes, says Dr. Flanagan.

Funding for the study came from the Natural Sciences and Engineering Research Council of Canada, the Wellcome Trust, the Human Frontier Science Program and the Riken Brain Science Institute.
 

- The study appears on-line today in the international journal Public Library of Science (PloS) - Biology
 

http://www.queensu.ca/

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

Contact: Nancy Dorrance
[email protected]
613-533-2869
Queen's University


Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us