XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
   Intelligence
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Memory Channel
subscribe to Memory newsletter

Latest Research : Neurosciences : Memory

   DISCUSS   |   EMAIL   |   PRINT
Snails Helping to Make Viagra for Brain
May 8, 2005, 20:22, Reviewed by: Dr.

Drug manufacturers are looking at ways to create a "Viagra for the brain", which could alleviate memory loss, one of the distressing symptoms of diseases such as Alzheimer's. Work carried out by Dr George Kemenes, Senior Fellow in the Department of Biology and Environmental Science at the University of Sussex, will hopefully help to show how such drugs could work.

 
Dr Kemenes says: "If you lose your memory, you lose your personality. Impaired long-term memory is a devastating consequence of a variety of diseases affecting millions of people. The knowledge obtained from this work will help us to understand, and ultimately prevent and treat, memory disorders or even enhance normal memory."

He adds: "The aim is to find brain molecules that are crucial for the building up and maintenance of long-term memory and learning. The biggest hope is that we will then be able to find out how to operate those functions and improve the speed at which animals learn, or help them remember for longer periods of time. This would then link into drug development for humans."

To do this, Dr Kemenes and his team, funded by a �750,000 grant from the Medical Research Council, will attempt to chemically enhance or inhibit those functions in the common pond snail.

Snails are ideal for this kind of study because humans and pond snails actually share some important characteristics, unchanged by evolution. These include the basic molecular mechanisms that control long-term memory and learning. These processes involve the activation or suppression of a protein, CREB, which is key to the formation of long-term memory, and found in species ranging from molluscs and flies to rats and man.

These responses can be tested by classic "Pavlovian" experiments that bring about a conditioned response. A snail exposed to the smell of pear drops and then food (sucrose, which they love), for example, will respond weeks later to the smell of pear drops by rhythmically moving its mouth parts in anticipation of food, even when none is provided. This shows that the snail now has a memory associating the smell of pear drops with the arrival of food - a learned and remembered response.

This "flashbulb" memory - created by just one response to stimuli, is complemented in Dr Kemenes' research by another test, where the snail is exposed to a tickling stimulus (which it doesn't like) before food is introduced. It takes much longer for the snail to associate this tickling with the arrival of food. Dr Kemenes will attempt to learn how to inhibit the quickly learned memory and improve the weaker, more slowly-acquired memory at molecular level by using different chemical preparations to activate or suppress the release of the memory-forming CREB protein.

Snails are also vital to this part of Dr Kemenes' research because they have large neurons (nerve cells), which are easily identified, manipulated and observed under a microscope than mammalian brain cells, making them ideal subjects for exploring the learning and memory process at the cellular and molecular level.
 

- Department of Biology and Environmental Science at the University of Sussex
 

www.sussex.ac.uk

 
Subscribe to Memory Newsletter
E-mail Address:

 



Related Memory News

Memories: It's all in the packaging
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
How the Brain Loses Plasticity of Youth
Apple Juice Inproves Memory By Boosting Acetylcholine Production
Fresh Light on How we form New Memories
Multi-tasking affects the brain's learning systems
Music thought to enhance intelligence
Our grip on reality is slim
Short term synaptic plasticity play a widespread role in information processing


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us