XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
Impaired clearance of amyloid-beta causes vascular damage in Alzheimer's disease
Jul 22, 2005, 00:30, Reviewed by: Dr.

These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer's disease and related cerebral amyloid angiopathies. And both studies confirm that Aβ generated by neurons accumulates in blood vessels following attempted clearance of excess Aβ peptides.

 
New research suggests that accumulation of amyloid-β peptides in cerebral blood vessels, as opposed to the brain itself, may be a more important pathological mediator of Alzheimer's disease. Two independent yet related articles describe such findings in the August issue of The American Journal of Pathology. Both articles are highlighted on the Journal's cover.

Alzheimer's disease, the most common form of progressive dementia, affects an estimated 4.5 million Americans according to the Alzheimer's Association. Amyloid-β (Aβ) deposition is a hallmark of Alzheimer's disease and other cerebral amyloid angiopathies. However, exactly how Aβ accumulates and causes damage is not fully understood.

In the first article, "Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP," Miao et al. describe early-onset Aβ deposition in Tg-SwDI mice. These mice express Aβ protein with mutations that are found in human early-onset cerebral amyloid angiopathy, causing specific accumulation of Aβ in cerebral blood vessels.

The Aβ peptides accumulated because they could not adequately cross the blood-brain barrier to be cleared from the brain. Over time, Aβ accumulation increased in the cerebral microvessels of the thalamus and subiculum of the brain. This resulted in degeneration of blood vessels as evidenced by reduced vessel density and increased apoptosis. Neuroinflammation also occurred as large numbers of microglia, along with inflammatory cytokines, were found at sites of Aβ accumulation.

The authors conclude that early-onset Aβ accumulation occurs predominantly in the cerebral microvasculature and appears largely responsible for the neuroinflammation in these mice. They also demonstrate the utility of Tg-SwDI mice in studying cerebral amyloid angiopathies, such as Alzheimer's disease.

The second article, by Kumar-Singh et al., "Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls," utilizes two different transgenic mice: Tg2576 and PSAPP. Both models produce dense-core plaques, highly concentrated deposits of Aβ, and were used to investigate the possible association of blood vessels with Aβ deposits.

In these mice, dense-core plaques associated with cerebral vessels with high specificity. There was also evidence of vessel damage and blood-brain barrier damage, resulting in release of Aβ through the vessel walls and accumulation of plaques next to the vessels. These data confirm previous observations in humans that senile plaques associate with blood vessels, especially in the vasculotropic Flemish type of Alzheimer's disease.

The authors propose a model of dense-core plaque formation that is dependent on cerebral vessels. As Aβ is cleared from the brain, it exerts a cytotoxic effect on the endothelial cells of the vascular wall (a process that may be exacerbated if clearance is impaired). This leads to loss of vessel integrity and accumulation of Aβ in the area surrounding the compromised vessel wall. Eventually, the damage is so great that the blood vessel deteriorates beyond functional use and new vessels form to pick up the slack. The result is a multicentric dense-core plaque that associates with multiple vessels.

These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer's disease and related cerebral amyloid angiopathies. And both studies confirm that Aβ generated by neurons accumulates in blood vessels following attempted clearance of excess Aβ peptides. Thus, study of novel therapies that reduce the blood vessel-associated deposition of Aβ may prove beneficial to patients with Alzheimer's disease.
 

- American Journal of Pathology
 

ajp.amjpathol.org

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 

*Miao J, Xu F, Davis J, Otte-H�ller I, Verbeek MM, Van Nostrand WE: Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP. Am J Pathol 2005, 167: 505-515

�Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C: Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol 2005, 167: 527-543

*Work was performed at Stony Brook University, New York. �Work was performed at the Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Belgium.

The American Journal of Pathology, the official journal of the American Society for Investigative Pathology (ASIP), seeks to publish high-quality original papers on the cellular and molecular mechanisms of disease. The editors accept manuscripts which report important findings on disease pathogenesis or basic biological mechanisms that relate to disease, without preference for a specific method of analysis. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, biological, animal, chemical and immunological approaches in conjunction with morphology.



Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us