XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
Three molecules may be developed into new Alzheimer's drugs
Jul 23, 2005, 01:16, Reviewed by: Dr.

"The insights gained about the mechanisms of the molecular and genetic basis of the disease are beginning to add up and can be harnessed for treatments."

 
A team of scientists has discovered three molecules �� from a search of 58,000 compounds �� that appear to inhibit a key perpetrator of Alzheimer's disease.

Each of the three molecules protects the protein called "tau," which becomes hopelessly tangled in the brains of patients with Alzheimer's. The finding is promising news for the development of drugs for the disease.

Ken Kosik, co-director of the Neuroscience Research Institute at the University of California, Santa Barbara, headed the effort to find these molecules. The results of the study are published in the July issue of the journal Chemistry and Biology, released on Friday, July 22.

As baby boomers grow older, the incidence of Alzheimer's, already increasing, will rise much more. "Our approaches to the disease are flagrantly inadequate," said Kosik.

"There are a couple of FDA-approved drugs that help a little, but don't modify the disease. They give a little bit of symptomatic relief, but don't change the inexorable progression of the disease."

He said that new insights made over the past decade help to understand the molecular and genetic basis of the disease and these can now be built upon for the development of treatments. "There is no doubt that we need new approaches," said Kosik. "The insights gained about the mechanisms of the molecular and genetic basis of the disease are beginning to add up and can be harnessed for treatments."

Alzheimer's involves a complicated, interwoven series of regulatory steps of genes and proteins "talking" to each other, he explained. "When the conversation goes awry the disease process begins. And it is not just one gene or one protein causing the damage."

The complexity of Alzheimer's means that several different medications will likely be needed to control it, said Kosik. The same is true for many other diseases �� from AIDS to cancer. "It is likely that we will need to strategically target different aspects of the disease and put them together."

Kosik and his team chose to focus on the neurofibrillary tangles of neurons in the brain that, along with senile plaques, characterize Alzheimer's disease. The tangles are made of "tau," a protein that is also present normally in the brain.

"Tau goes wrong and becomes pathological when it becomes intensely phosphorylated," said Kosik. "This means that many phosphate groups attach to tau--modify it--and cause it to become dysfunctional."

The culprit is an enzyme, called CDK5, that attaches the phosphate to the tau protein, facilitating the disease process. The researchers set out to find a way to inhibit this enzyme, to keep it from putting any phosphate on tau.

In the laboratory, they purified the enzyme and purified tau protein, and watched tau get phosphorylated by the enzyme. They then performed a library search of small molecules (58,000 of them) in an attempt to find those that would prevent phosphorylation. Small molecules are preferred because they are more easily used as a drug since they can get through the body and into cells. It is also important to find molecules that will cross the blood brain barrier.

They then set up a test of nearly 400 small molecules that fit their criteria. The test results showed three small molecules that can inhibit the enzyme. These are candidates for development as drugs.

Kosik explained that proteins are strings of amino acids folded into small globs. All proteins that happen to be an enzyme involved in phosphorylation have one thing in common. They have a pocket that is almost always in the same place and this is where the phosphate attaches to the enzyme, in this case CDK5. To get a molecule that specifically prevents the enzyme from binding at the pocket is difficult.

Of the three compounds that the research group found, the scientists were able to locate where they bind. They found that one binds in the pocket, another binds at the edge of the pocket, and a third appears to bind completely outside the pocket. The scientists are most interested in the second and third compounds.

"This is the first demonstration that we can find small molecules that can more specifically affect the phosphorylation of tau by CDK5," said Kosik.

In terms of future directions, Kosik said, "There is lots to do here, lab testing, testing in animals, etc. But we have made an important step forward toward developing treatments for this disease."

He noted that this work is of a type usually performed by pharmaceutical companies, but in this case was completed in an academic environment.
 

- July issue of the journal Chemistry and Biology
 

http://www.ucsb.edu/

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 

The work was partly funded by NIH grants, the Institute for the Study of Aging, and the Department of Energy Computational Science Graduate Fellowship.

In addition to Kosik, authors of the paper include: Jae Suk Ahn, Sungwoon Choi, and Gregory D. Cuny of the Department of Neurology and Laboratory for Drug Discovery in Neuroegeneration of Brigham and Women's Hospital, Harvard Medical School; Mala L. Radhakrishnan of the Computer Science and Artificial Intelligence Laboratory, Department of Chemistry, Massachusetts Institute of Technology; Marina Mapelli and Andrea Musacchio of the Structural Biology Unit of the Department of Experimental Oncology, European Institute of Oncology, Milan, Italy; Bruce Tidor of the Computer Science and Artificial Intelligence Laboratory, Biological Engineering Division, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.


Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us