XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
New dye NIAD-4 could offer early test for Alzheimer's
Aug 27, 2005, 03:37, Reviewed by: Dr.

"What we have is a dye that lights up when it binds to amyloids that form in the brains of people with Alzheimer's. It's a completely new transduction scheme-a way of translating a physical or chemical event that's invisible to the naked eye, into a recognizable signal. Further wavelength adjustments in these dyes will allow us to perform in vivo analysis through human tissue."

 
MIT scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it.

Today, doctors can only make a definitive diagnosis of Alzheimer's-currently the fourth-leading cause of death in the United States-through a postmortem autopsy of the brain. "Before you can cure Alzheimer's, you have to be able to diagnose it and monitor its progress very precisely," said Timothy Swager, leader of the work and a professor in MIT's Department of Chemistry. "Otherwise it's hard to know whether a new treatment is working or not."

To that end, Swager and postdoctoral associate Evgueni Nesterov, also from the MIT Department of Chemistry, worked with researchers at Massachusetts General Hospital and the University of Pittsburgh to develop a contrast agent that would first bind to the protein deposits, or plaques, in the brain that cause Alzheimer's, and then fluoresce when exposed to radiation in the near-infrared range. The new dye could allow direct imaging of Alzheimer's plaques through a patient's skull.

Some of the first noninvasive techniques for diagnosing Alzheimer's involved agents labeled with radioactive elements that could enter the brain and target disease plaque for imaging with positron emission tomography (PET). However, these methods were expensive and limited by the short working lifetime of the labeled agents.

Swager and colleagues developed the new dye, called NIAD-4, through a targeted design process based on a set of specific requirements, including the ability to enter the brain rapidly upon injection, bind to amyloid plaques, absorb and fluoresce radiation in the right spectral range, and provide sharp contrast between the plaques and the surrounding tissue. The compound provided clear visual images of amyloid brain plaques in living mice with specially prepared cranial windows.

To make the technique truly noninvasive, scientists must further refine the dye so it fluoresces at a slightly longer wavelength, closer to the infrared region. Light in the near-IR range can penetrate living tissue well enough to make brain structures visible. Swager likens the effect to the translucence produced when one holds a red laser pointer against the side of a finger.

"This procedure could be done in a chamber with a photodetector and a bunch of lasers, and it would be painless," he said, adding that infrared fluorescence and other optical techniques will lead to a whole new class of noninvasive medical diagnostics. Swager says fluorescing dyes like NIAD-4 could be ready for clinical trials in the near future.

"What we have is a dye that lights up when it binds to amyloids that form in the brains of people with Alzheimer's. It's a completely new transduction scheme-a way of translating a physical or chemical event that's invisible to the naked eye, into a recognizable signal. Further wavelength adjustments in these dyes will allow us to perform in vivo analysis through human tissue."

The new dye was developed as part of a broader effort in sensing technology at MIT's Institute for Soldier Nanotechnologies. In addition to its applications as a medical diagnostic, Swager says fluorescing dyes like NIAD-4 could work as signals in a wide variety of sensing schemes.
 

- The work will be published in the Aug. 26 issue of Angewandte Chemie.
 

Massachusetts Institute of Technology

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 



Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us