XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
  Resuscitation
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Anaethesia Channel
subscribe to Anaethesia newsletter

Latest Research : Anaethesia

   DISCUSS   |   EMAIL   |   PRINT
Near infrared laser device can measure brain oxygen levels
Oct 25, 2005, 05:26, Reviewed by: Dr.

"This new technology, which is non-invasive and provides real-time information, appears to be an accurate means for measuring cerebral oxygenation and indirectly cerebral perfusion. As anesthesiologists, protecting the brain from potential harm is one of the main functions we perform during a surgical procedure."

 
A new device that uses near-infrared light to non-invasively monitor the oxygenation of the brain during surgery appears to be a promising alternative to the more invasive techniques currently in use, according to a new study by Duke University Medical Center anesthesiologists.

The researchers said their findings offer the potential for accurate and reliable monitoring of brain oxygenation during cardiac surgeries, to more effectively protect the brain against reduced oxygen levels, or anoxia, which is known to cause cognitive impairment in some surgical patients.

During some surgeries anesthesiologists measure venous oxygenation by periodically removing blood samples from catheters inserted in major blood vessels in the neck and then analyze the samples by co-oximetry. Also, anesthesiologists frequently use a pulse oximeter, attached to the patient's finger, to measure arterial blood oxygenation. However, since these measurements are taken on blood outside the brain, physicians can only estimate the level of cerebral oxygenation.

Designed by CAS Medical Systems, Inc., the monitor, called a cerebral oximeter, uses one or more sensors attached to the forehead that emit non-harmful, low-level laser light through the skin and skull into the brain. Since the near-infrared light absorption characteristics of the hemoglobin in red blood cells are known, the system can calculate the brain tissue oxygen saturation by measuring the differences in intensity of light as it passes through the brain. When combined with pulse oximetry, the cerebral oximeter may be used to estimate the cerebral venous oxygen saturation.

The basic principle of cerebral oximetry is based on optical spectroscopy techniques. The discovery that near-infrared light can pass through the scalp and skull to examine levels of hemoglobin and other light absorbing compounds of the brain was made at Duke by Frans Jobsis, Ph.D., in 1977.

"It has always been a challenge to directly measure the oxygen levels in the brain," said Duke anesthesiologist David MacLeod, M.D., who presented the results of the Duke study Oct. 22, 2005, at the annual scientific sessions of the American Society of Anesthesiologists in Atlanta. "The main issues with the invasive approach are that it does not provide specific information in real time, and it is of course invasive, which can carry some risk to the patient.

"This new technology, which is non-invasive and provides real-time information, appears to be an accurate means for measuring cerebral oxygenation and indirectly cerebral perfusion," MacLeod said. "As anesthesiologists, protecting the brain from potential harm is one of the main functions we perform during a surgical procedure."

For their study, the researchers enrolled 12 healthy volunteers. The volunteers were monitored using the different blood oxygenation measurement systems pulse oximetry, jugular and radial arterial co-oximetry, and the prototype cerebral oximeter. In a stepwise fashion, the researchers decreased and then increased the concentration of inhaled oxygen through a range of 70 to 100 percent arterial blood oxygen saturation. Frequent, concurrent measurements were made on all three systems throughout the process.

"We made a total of 171 readings and found a strong correlation between the reference co-oximetry measurements by the invasive methods to the non-invasive approaches," MacLeod said. "So it appears that we can use non-invasive approaches to estimate something we could in the past only measure with invasive sampling."

While pulse oximetry is used universally to measure arterial oxygen saturation for all patients undergoing surgery, interest in cerebral oxygenation levels have mainly been the domain of cardiac surgeons and anesthesiologists, according to MacLeod, given the rising concerns about potential cognitive impairments suffered by some patients undergoing open heart surgery.

Following this successful validation of the CAS cerebral oximeter, the Duke team is conducting a clinical trial to refine the optimal range of cerebral oxygenation in patients undergoing heart surgery. After surgery these patients will be periodically assessed to detect any correlation between cerebral oxygen levels during surgery and post-op changes in cognition.
 

- American Society of Anesthesiologists
 

www.dukemednews.org

 
Subscribe to Anaethesia Newsletter
E-mail Address:

 

The study was funded by a Phase II Small Business Innovative Research grant from the National Institutes of Health awarded to CAS. MacLeod has no financial interest in CAS.

Duke colleagues on the study included Keita Ikeda, Ph.D., Eugene Moretti, M.D., John Keifer, M.D., and Hilary Grocott, M.D.


Related Anaethesia News

Near infrared laser device can measure brain oxygen levels
Hospital characteristics play a role in use of do-not-resuscitate orders
Latest Data on Novel Short-acting Sedatives
Org 25969 - the First Selective Relaxant Binding Agent for Neuromuscular Block Reversal Enters Phase 3
Dangerous reduction in Oxygen levels during Air Travel


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us