XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
  Hemophilia
  Anaemia
  Polycythemia
  Thalassemias
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Haematology Channel
subscribe to Haematology newsletter

Latest Research : Haematology

   DISCUSS   |   EMAIL   |   PRINT
Study holds hope for next generation hemophilia treatment
Jul 22, 2005, 00:28, Reviewed by: Dr.

"Our goal is to improve upon nature by developing gain-of-function factor VIII proteins that are superior to the factor VIII protein found in healthy individuals," Fay said. "These more potent forms are not likely to occur naturally since they would theoretically result in excessive clotting, blocked arteries and heart attacks in otherwise healthy people. In patients with hemophilia, however, enhanced clotting is desirable."

 
Researchers have doubled the potency of a protein that drives blood to clot, according to research to be published in the July 26 edition of Biochemistry. The study results may have profound implications for the treatment of hemophilia, the inherited blood disorder that causes easy or excessive bleeding in 30,000 Americans.

In most cases, hemophilia is caused by a lack of factor VIII, one of several proteins that enable blood to solidify, or clot, to plug wounds after injury. Current preventive treatment consists of genetically engineered factor VIII administered by injection, but one quarter of those born with no factor VIII suffer severe immune reactions that render the treatment inactive. In addition, current treatment costs as much as $200,000 per patient per year. Researchers at the University of Rochester Medical Center have been studying the structure of factor VIII for 20 years, and are making subtle changes in the protein with the goal of offering more effective, less burdensome treatment.

"We set out to design a version of factor VIII that would improve on the naturally-occurring form of the protein," said Philip Fay, Ph.D., professor in the Department of Biochemistry and Biophysics at the University of Rochester Medical Center, and the study's senior author. "A more potent form of factor VIII, one that could treat effectively with a lower dose, would reduce the cost and, potentially, avert immune reactions," Fay said.

Study Details

Blood clotting involves more than a dozen clotting factors, many named with roman numerals. They form a cascade of chemical reactions inside blood vessels following injury, with each factor, or complex of factors, activating the next in the chain. Factor VIII partners with factor IX to activate factor X, which creates a burst of thrombin, which in turn generates fibrin, the sticky protein strands that form a web-like clot over damaged tissue. Calcium, a metallic element, must be present for factor VIII to work. Factor VIII has on its surface pocket-like chains of amino acids shaped to hold calcium ions (calcium binding sites). When calcium bonds to it, factor VIII changes shape and becomes better able to bind factor IX.

In past research, Fay's team had identified a single amino acid (out of the more than 2,300 building blocks making up factor VIII) with the potential, if replaced, to change the performance of entire protein. Researchers proved the theory in the current study by swapping out a glutamic acid naturally occurring at a specific point in a calcium binding site on factor VIII with 19 different amino acids. One of the replacements, alanine, doubled the ability of factor VIII to bind with factor IX. Results were measured by introducing each form of factor VIII into hemophilic blood plasma and recording the time it took to cause clotting.

Fay, along with Hironao Wakabayashi, M.D., a research assistant professor at the University of Rochester Medical Center and co-inventor, have filed a patent application for the factor VIII redesign used in the published study. Moving forward, Fay's team will target additional calcium binding sites with the goal of making changes that further increase factor VIII potency.

"Our goal is to improve upon nature by developing gain-of-function factor VIII proteins that are superior to the factor VIII protein found in healthy individuals," Fay said. "These more potent forms are not likely to occur naturally since they would theoretically result in excessive clotting, blocked arteries and heart attacks in otherwise healthy people. In patients with hemophilia, however, enhanced clotting is desirable."
 

- July 26 edition of Biochemistry
 

www.urmc.rochester.edu

 
Subscribe to Haematology Newsletter
E-mail Address:

 



Related Haematology News

High-dose Calcitriol (DN-101) with Docetaxel Reduced Thrombosis
Blood-compatible nanoscale materials possible using heparin
Potential of HOXB4 and Hematopoietic Stem Cell Expansion
Deferasirox may revolutionize the way chronic iron overload is treated
Alpha-Thalassemia and Protection from Malaria
New research links αIIbβ3 to Glanzmann thrombasthenia
Hemophilia a silent killer
MBD2 Protein mediates silencing of the fetal gamma-globin gene through DNA methylation
JAK2 Mutation in blood stem cells provides clues to polycythemia vera
Urinary infection could cause deep vein thrombosis


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us