XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
   Plasmodium
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Malaria Channel
subscribe to Malaria newsletter

Latest Research : Infectious Diseases : Malaria

   DISCUSS   |   EMAIL   |   PRINT
Clues to the Evolution of the Malarial Chromosome
Sep 13, 2005, 16:00, Reviewed by: Dr.

These results are important because they provide information on the multiple complex factors that must be considered in understanding the genomic structure of P. falciparum, which is critical for identifying genes that contribute to phenotypes such as drug resistance and virulence.

 
Understanding the recombination patterns across a chromosome—determining the positions and frequency of genetic exchanges between homologous chromosomes—is crucial for understanding and tracking inheritance of traits. Mapping genes that affect parasites' traits, such as responses to various antimalarial agents, is possible because, during meiosis, homologous chromosomes line up and may exchange segments. Genes—or any polymorphic bits of DNA—that are close together tend to remain linked during this process, while those far apart tend to become separated. Identifying and following polymorphic markers through multiple generations is a key technique for genetic mapping.

For Plasmodium falciparum, the microbe that causes malaria, chromosomal mapping is necessary for understanding the evolution of the parasite and development of drug resistance, but multiple factors make this a complex task. In this issue, Jianbing Mu and colleagues use single nucleotide polymorphisms (SNPs) to evaluate some of these factors, and set the stage for further mapping of this important parasite's genome.

The authors began by locating 183 SNPs spaced across Chromosome 3 in 99 P. falciparum populations from throughout the world. Not all SNPs were found in all populations, indicating a more recent evolutionary origin for some SNPs; these differences were then used to track evolution and migration in parasites. Statistical analysis of the SNPs allowed the populations to be parsed into five groups, largely corresponding to continents. More refined analysis of the SNPs revealed possible migratory history, including a recent migration of an African variety to coastal South America.

Mu and colleagues also showed for the first time that the historical rate of recombination varies widely—over 20-fold—among different populations. A large part of the variation is due to a combination of the frequency of infections with multiple parasite strains (because sexual recombination occurs only within an infected mosquito) and the degree of inbreeding within a parasite population. Inbreeding tends to lower the extent of detectable recombination events, while multiple infections by different strains increase it.

Despite the wide differences in recombination rates, all populations had a similar clustering of recombination “hot spots” at the middle and ends of the chromosome. Recombination is most likely to occur at these spots, and the similar localization reflects either the common evolutionary history of all the populations or localization of crossover events to particular genomic regions.

The authors compared their results from population structure analysis with those using SNPs from genes that might be influenced by drug pressure. Their results showed that misleading inferences about the parasite population structures could be derived using information from genes that are potentially under drug selection.

These results are important because they provide information on the multiple complex factors that must be considered in understanding the genomic structure of P. falciparum, which is critical for identifying genes that contribute to phenotypes such as drug resistance and virulence. Reseachers conducting future mapping studies will be able to draw on the important findings and caveats revealed by this work to refine their own methods and interpret their results.
 

- (2005) Clues to the Evolution of the Malarial Chromosome. PLoS Biol 3(10): e361
 

Read Research Article

 
Subscribe to Malaria Newsletter
E-mail Address:

 

PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.

Clues to the Evolution of the Malarial Chromosome

DOI: 10.1371/journal.pbio.0030361

Published: September 13, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Malaria News

Retina can provide a very reliable way of diagnosing cerebral malaria
New findings could lead to vaccine for severe malaria
AgDscam gene Holds the Key to Broad-Based Pathogen Recognition
Genes responsible for malaria parasite's survival pin pointed
Mosquito immune system examined
The Haptoglobin Genotype Connection with Childhood Anemia in a Malaria-Endemic Region
Mosquitoes that could help combat malaria!
Malaria parasite plasmodium impairs key immune system cells
Modeling the Impact of Intermittent Preventative Treatment on the Spread of Drug-Resistant Malaria
Global warming trend may contribute to malaria's rise


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us