XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Regeneration Channel
subscribe to Regeneration newsletter

Latest Research : Neurosciences : Regeneration

   DISCUSS   |   EMAIL   |   PRINT
Silenced smedwi-2 gene shows role in regeneration
Nov 25, 2005, 06:27, Reviewed by: Dr.

"The smedwi-2 molecule is doing something early in the specification of stem cell progeny that modulates their ability to differentiate into the proper cell type"

 
Researchers at the University of Utah have discovered that when a gene called smedwi-2 is silenced in the adult stem cells of planarians, the quarter-inch long worm is unable to carry out a biological process that has mystified scientists for centuries: regeneration.

The study published in the Nov. 25 issue of Science was led by Alejandro Sánchez Alvarado, Ph.D., Howard Hughes Medical Institute investigator and professor of neurobiology and anatomy at the U of U School of Medicine, and carried out by members of his laboratory, in particular Helen Hay Whitney Foundation post-doctoral fellow Peter W. Reddien who is now an Associate Member at the Whitehead Institute for Biomedical Research.

Elimination of smedwi-2 not only leads to an inability to mount a regenerative response after amputation, but also to the eventual demise of unamputated animals along a reproducible series of events, that is, regression of the head tip, curling of the body and tissue disintegration. These defects are very similar to what is observed after the planarian stem cells are destroyed by lethal doses of irradiation. The key difference, however, is that the irradiation-like defects observed in animals devoid of smedwi-2 occur even though the stem cells are still present in the organism.

This finding suggests something surprising: the instructions that a daughter stem cell needs to differentiate for regeneration or for maintaining tissue structure begin to be defined at the time of division of its parent cell. "Once the smedwi-2 molecule is eliminated, the animal is destined to die since the functions of the daughter cells are severely compromised" said Sánchez Alvarado.

The study follows a landmark work that he and Reddien published last spring in Developmental Cell, in which, using a method of gene silencing called RNA interference (RNAi), the researchers silenced more than 1,000 planarian genes, some of which they identified as essential for regeneration. The Science study focus on one such gene, smedwi-2, and brings a new level of genetic detail to understanding planarian regeneration.

Planarians long have fascinated biologists with their ability to regenerate. A worm sliced in two forms two new worm s; even a fractional part of a planarian will grow into a new worm. Scientists know that planarian stem cells, called neoblasts, are central to regeneration, but their exact role is only now being learned.

When an animal stem cell divides, two daughter cells are formed: one that is another stem cell and a second one that can differentiate into the cells that form bone, tissue, and other parts of an organism. These second types of cells are essential for regeneration or maintaining the form and function of tissues by replacing cells that die, a process called homeostasis.

By eliminating smedwi-2, the researchers uncovered a role of this protein in regulating the normal differentiation and function of daughter cells.

The researchers postulated three theories why the worms could not regenerate or maintain cells after smedwi-2 was silenced:

# The stem cells were not responding to tissue damage or homeostasis signals.
# The stem cell division progeny failed to migrate to the appropriate tissues.
# The daughter cells didn't know how to differentiate.

The team found that the stem cells were competent to robustly respond to amputation by significantly increasing their proliferation as well as to home to tissues undergoing homeostasis. But the researchers also found that once the daughter cells reach their target tissues, they were unable to properly differentiate.

"The smedwi-2 molecule is doing something early in the specification of stem cell progeny that modulates their ability to differentiate into the proper cell type," Sánchez Alvarado said. How this molecule is modulating stem cells is one of the next steps that he and Reddien are trying to solve. The answer could have far-reaching implications, because genes similar to smedwi-2 are found in plants, animals and human beings.
 

- Nov. 25 issue of Science
 

uuhsc.utah.edu

 
Subscribe to Regeneration Newsletter
E-mail Address:

 



Related Regeneration News

Severed nerve fibers in spinal cord can regenerate for long distances
Common brain cells may have stem-cell-like potential
Using Embryonic Stem Cells to Awaken Latent Motor Nerve Repair
Understanding how axons find their destinations
Novel stem cell technology leads to better spinal cord repair
Myosin-II: A new focus for the mechanism of nerve growth
Structural remodeling of neurons demonstrated in mature brains
How "baby" neurons are integrated into brain
Nerve regeneration is possible in spinal cord injuries
Silenced smedwi-2 gene shows role in regeneration


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us