XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
  Asthma
  COPD
  Cystic Fibrosis
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Cystic Fibrosis Channel
subscribe to Cystic Fibrosis newsletter

Latest Research : Respiratory Medicine : Cystic Fibrosis

   DISCUSS   |   EMAIL   |   PRINT
How to design a better drug to treat cystic fibrosis
Sep 4, 2005, 08:30, Reviewed by: Dr.

"The chemical mechanisms directing chloride binding and transport are poorly understood. The mechanisms determining how sodium, potassium and calcium get across are much better known. We're trying to find out how chloride actually gets across so we will then be able to manipulate both the transport rates and selectivity."

 
John Tomich, a Kansas State University professor of biochemistry, spends much of his day thinking about how to design a better drug to treat cystic fibrosis.

A chronic and progressive disease, cystic fibrosis is usually diagnosed in childhood. It causes mucus to become thick, dry and sticky. The mucus builds up and clogs passages in the lungs, pancreas and other organs in the body.

There is no cure for cystic fibrosis. Management of the disease varies from person to person and generally focuses on treating respiratory and digestive problems to prevent infection and other complications. Treatment usually involves a combination of medications and home treatment methods, such as respiratory and nutritional therapies.

Tomich, along with colleagues Takeo Iwamoto, a K-State research assistant professor, and Shawnalea J. Frazier, senior in biochemistry, Haysville, have been working to understand how ions travel across cell membranes, specifically the anion part of sodium chloride.

Tomich presented a paper on the trios' findings, "Assessing The Contributions of H-Bonding Donors to Permeation Rates and Selectivity in Self-Assembling Peptides that Form Chloride Selective Pores," Aug. 28 at the Membrane Active, Synthetic Organic Compounds Symposium of the American Chemical Society's national meeting and exposition in Washington, D.C.

"What's kind of an honor about this is we were one of the few, purely biochemical research groups who are presenting in this symposium," Tomich said. "This is a section organized by organic chemists."

Tomich and his collaborators have used a series of single and double amino acid substitutions to modulate the activity of a channel forming peptide derived from the second transmembrane segment of the alpha subunit of the human spinal cord glycine receptor.

Tomich said chloride ions are hydrogen bond acceptors; consequently, it is hypothesized the hydroxyl function contributes strongly to ion throughput across and/or ion selectivity within the channel structures. Residue replacements in the peptide involving the 13th and 17th positions were designed to correlate hydrogen-bonding strength with selectivity and permeation rates. The hydrogen bonding strengths of the amino acid side-chains correlate directly with anion selectivity and inversely with transport rates for the anion.

According to Tomich, these results will help in optimizing these two counteracting channel properties.

"Your body knows how to separate these things all by itself," Tomich said. "Sodium is usually higher outside the cell, potassium is higher inside the cell and chloride, depending on the cell type, can be the same or different.

"The chemical mechanisms directing chloride binding and transport are poorly understood," he said. "The mechanisms determining how sodium, potassium and calcium get across are much better known. We're trying to find out how chloride actually gets across so we will then be able to manipulate both the transport rates and selectivity."

Tomich began working on this many years ago. Over the past 15 years, his lab has developed more than 200 sequences that showed varied ion transport activity in synthetic membranes, as well as cultured epithelial cells and animals. From all of that they can change virtually the way this ion channel assembles. Some of the compounds that he has designed work at very low concentrations but lack some of the chloride specificity that it once had. Their presentation discussed how the researchers back-designed the channel pore so it can be more specified for chloride.

"Our goal is to make a drug that would work efficiently and effectively at low doses," Tomich said. "We have some early designs that are highly selective for chloride, but you'd have to give them a lot of the compound to see the effect."
 

- Membrane Active, Synthetic Organic Compounds Symposium of the American Chemical Society's national meeting and exposition in Washington, D.C., August 28, 2005
 

Kansas State University

 
Subscribe to Cystic Fibrosis Newsletter
E-mail Address:

 

Tomich's research is funded in part by a grant from the National Institute of General Medical Sciences at the National Institutes of Health.

Related Cystic Fibrosis News

Cystic fibrosis-related diabetes is due to functional abnormalities in beta cells
No evidence for inhaled corticosteroids efficacy in cystic fibrosis
Hcp1 plays a critical role in cystic fibrosis infection
Cystic fibrosis research could benefit from multi-functional sensing tool
Loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis
New treatment for cystic fibrosis patients
Genetic variations influence cystic fibrosis' severity
How to design a better drug to treat cystic fibrosis
FDA Gives Clearance to the First Cystic Fibrosis DNA test


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us