XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
  CTVS
  Transplantation
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Sep 26th, 2006 - 22:50:37

Surgery Channel
subscribe to Surgery newsletter

Latest Research : Surgery

   DISCUSS   |   EMAIL   |   PRINT
Mathematical tools for predicting facial surgery results
Sep 26, 2006, 22:48, Reviewed by: Dr. Rashmi Yadav

The article by Deuflhard et al states that qualitative comparisons between the outcomes predicted by the model, and the actual surgical outcomes, have been surprisingly good. The authors have also made quantitative comparisons, by creating a post-operative model of the patient and comparing it quantitatively to the predicted outcome.

 
Cranio-maxillofacial surgery is a medical specialty focusing on facial and skull reconstruction. This surgery can help patients with such disorders as cleft palate, malformations of the upper or lower jaw, and problems with the facial skeleton due to injury. Intensive pre-operative planning is needed not only to ensure that the medical purposes of the surgery are achieved, but also to give patients a sense of what their faces will look like after the surgery is performed.

In their article "Mathematics in Facial Surgery," Peter Deuflhard, Martin Weiser, and Stefan Zachow (of the Konrad Zuse Zentrum (ZIB), Berlin) describe the mathematical techniques they have used to assist cranio-maxillofacial surgeons to predict the outcomes of surgery. These techniques have proven to be quite successful in producing predictions that end up matching well the post-operative outcomes.

The first step in the planning paradigm for such surgery is to use medical imaging data of the patient to construct a 3-dimensional computer model, called the "virtual patient". The second step, which is the one the article focuses on, uses the data to create a "virtual lab" in which various operative strategies can be tested. The last step is to play back to the patient the outcomes of the various strategies.

The second step in the paradigm requires modeling and solving partial differential equations (PDEs), which are equations that represent changing physical systems. One must identify which PDEs are appropriate for biomechanical modeling of soft facial tissue and bone. Standard methods for handling the equations need to be adapted for this particular application. One must also formulate ways to represent the interface between tissue and bone, as well as their interactions. Generally such PDEs cannot be solved exactly in closed form, so mathematics enters the picture once again to provide numerical techniques for producing approximate solutions.

With the "virtual patient" data as input, one can use the approximate solutions to generate an individualized model for that particular patient. The surgeons can then use the model as a "virtual lab" to predict the effects of surgical procedures and options, and patients can get a picture of approximately how they will look after the surgery.

The article by Deuflhard et al states that qualitative comparisons between the outcomes predicted by the model, and the actual surgical outcomes, have been surprisingly good. The authors have also made quantitative comparisons, by creating a post-operative model of the patient and comparing it quantitatively to the predicted outcome. They found a mean prediction error of between 1 and 1.5mm for the soft tissue, which they write "seems to be a fully acceptable result."

"Even though biomechanical tissue modeling turns out to be a tough problem, we are already rather successful in predicting postoperative appearance from preoperative patient data," the authors write. "For the surgeon, our computer assisted planning permits an improved preparation before the actual operation."
 

- The article "Mathematics in Facial Surgery" appears in the October 2006 issue of the Notices of the AMS
 

www.ams.org/notices/200609/fea-surgery.pdf

 
Subscribe to Surgery Newsletter
E-mail Address:

 

Founded in 1888 to further mathematical research and scholarship, the more than 30,000-member American Mathematical Society fulfills its mission through programs and services that promote mathematical research and its uses, strengthen mathematical education, and foster awareness and appreciation of mathematics and its connections to other disciplines and to everyday life.


Related Surgery News

Predicting survival in liver transplant patients
Many urinary stones can be treated without surgery
Mathematical tools for predicting facial surgery results
SALT protocol improves quality of donor lungs significantly
Costimulation blockade: Will this lead to rejection-free transplants?
Bringing space age to surgery equipment, procedures
Hepatorenal syndrome patients best benefited by a combined liver-kidney transplant
Botox Injections Help Minimize Facial Scars
Microskin relieves emotional trauma for child burn victims
'Domino' transplant program makes best use of altruistic donated kidneys


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us