XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Nanotechnology Channel
subscribe to Nanotechnology newsletter

Latest Research : Biotechnology : Nanotechnology

   DISCUSS   |   EMAIL   |   PRINT
Tiny inhaled particles take easy route from nose to brain
Aug 3, 2006, 17:29, Reviewed by: Dr. Priya Saxena

The study tested manganese oxide ultrafine particles at a concentration typically inhaled by factory welders. The manganese oxide particles were the same size as manufactured nanoparticles, which are controversial and being diligently investigated because they are the key ingredient in a growing industry -- despite concerns about their safety.

 
In a continuing effort to find out if the tiniest airborne particles pose a health risk, University of Rochester Medical Center scientists showed that when rats breathe in nano-sized materials they follow a rapid and efficient pathway from the nasal cavity to several regions of the brain, according to a study in the August issue of Environmental Health Perspectives.

Researchers also saw changes in gene expression that could signal inflammation and a cellular stress response, but they do not know yet if a buildup of ultrafine particles causes brain damage, said lead author Alison Elder, Ph.D., research assistant professor of Environmental Medicine.

The study tested manganese oxide ultrafine particles at a concentration typically inhaled by factory welders. The manganese oxide particles were the same size as manufactured nanoparticles, which are controversial and being diligently investigated because they are the key ingredient in a growing industry -- despite concerns about their safety.

Nanotechnology is a new wave of science that deals with particles engineered from many materials such as carbon, zinc and gold, which are less than 100 nanometers in diameter. The manipulation of these materials into bundles or rods helps in the manufacturing of smaller-than-ever electronics, optical and medical equipment. The sub-microscopic particles are also used in consumer products such as toothpaste, lotions and some sunscreens.

Some doctors and scientists are concerned about what happens at the cellular level after exposure to the ultrafine or nano-sized particles, and the University of Rochester is at the forefront of this type of environmental health research. In 2004 the Defense Department selected the University Medical Center to lead a five-year, $5.5 million investigation into whether the chemical characteristics of nanoparticles determine how they will interact with or cause harm to animal and human cells.

In the current study, the particles passed quickly through the rats' nostrils to the olfactory bulb, a region of the brain near the nasal cavity. They settled in the striatum, frontal cortex, cerebellum, and lungs.

After 12 days, the concentration of ultrafine particles in the olfactory bulb rose 3.5-fold and doubled in the lungs, the study found. Although the ultra-tiny particles did not cause obvious lung inflammation, several biomarkers of inflammation and stress response, such as tumor necrosis factor and macrophage inflammatory protein, increased significantly in the brain, according to gene and protein analyses.

"We suggest that despite differences between human and rodent olfactory systems, this pathway is likely to be operative in humans," the authors conclude.
 

- August issue of Environmental Health Perspectives
 

www.urmc.rochester.edu

 
Subscribe to Nanotechnology Newsletter
E-mail Address:

 

The U.S. Environmental Protection Agency, National Institute of Environmental Health Sciences, Department of Defense and Department of Energy funded the study.

Related Nanotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
'Custom' nanoparticles could improve cancer diagnosis and treatment


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us