XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
  Depression
  Neuropsychiatry
  Personality Disorders
  Bulimia
  Anxiety
  Substance Abuse
  Suicide
  CFS
  Psychoses
  Child Psychiatry
  Learning-Disabilities
  Psychology
  Forensic Psychiatry
  Mood Disorders
  Sleep Disorders
   Circardian Rhythm
  Peri-Natal Psychiatry
  Psychotherapy
  Anorexia Nervosa
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Sleep Disorders Channel
subscribe to Sleep Disorders newsletter

Latest Research : Psychiatry : Sleep Disorders

   DISCUSS   |   EMAIL   |   PRINT
Infant Sleep: A Precursor to Adult Sleep?
Apr 19, 2005, 17:12, Reviewed by: Dr.

In a new study, Karl Karlsson, Mark Blumberg, and their colleagues tackle the technical difficulties involved in studying the tiny neonatal brain to investigate the neural activity associated with infant sleep states. The active sleep of week-old rats, they show, bears a striking resemblance to the conventional definitions of adult sleep. What’s more, the neural mechanisms underlying the infant sleep state contain the primary components of adult sleep.

 
Sleep is absolutely essential for well-being. Just ask one of the 40 million Americans with sleep disorders who suffer crippling fatigue, impaired judgment, irritability, moodiness, and myriad health problems. Still, its precise function remains unclear. An intriguing role for REM sleep—the stage most closely associated with dreaming—was suggested almost 40 years ago when sleep researchers Howard Roffwarg and William Dement discovered that babies spend far more time in REM sleep than adults—prompting their hypothesis that infant REM sleep plays a role in central nervous system development.

A central element of their hypothesis revolves around the nature of infant sleep and whether the neural mechanisms of infant sleep differ significantly from those of adult sleep. Infant rats, like the offspring of other “altricial” species (born naked, helpless, and blind), spend most of their time in what’s now called active sleep, indicated by intermittent muscle twitching and low muscle tone (atonia)—behaviors characteristic of adult REM sleep. At issue is whether infant mechanisms are primitive, undifferentiated, and distinct from adult mechanisms or whether they contain elementary components that are integrated into the developing sleep system.

In a new study, Karl Karlsson, Mark Blumberg, and their colleagues tackle the technical difficulties involved in studying the tiny neonatal brain to investigate the neural activity associated with infant sleep states. The active sleep of week-old rats, they show, bears a striking resemblance to the conventional definitions of adult sleep. What’s more, the neural mechanisms underlying the infant sleep state contain the primary components of adult sleep.

In previous studies, Karlsson and Blumberg discovered a brainstem region in the ventromedial medulla, which they called the medullary inhibitory area (MIA), that appears functionally equivalent to the region that generates REM atonia in adults. They also found that the MIA doesn’t generate infant sleep on its own but depends on a network that spans both lower brainstem and midbrain regions. In this study, the authors set out to identify the neural structures that project to the MIA and better characterize the network.

Karlsson et al. first established that there are neurons that connect to the MIA from areas in the medulla and pons. Then, by recording from neurons in these areas, they found neurons that are active only during sleep or wakefulness and that appear to control muscle tone and twitching. Neurons active mostly during atonia—indicating sleep—concentrated in the subcoeruleus (SubLC) region of the pons; those active mostly during wakefulness clustered in an area within the dorsolateral pontine tegmentum (DLPT) in the midbrain. The authors went on to link different sets of neurons with specific behaviors and brain regions. A group of neurons within the DLPT, for example, showed distinct bursts of activity just before muscle twitching. And a subset of SubLC neurons fired at much higher rates when atonia was accompanied by bouts of tail and neck muscle twitching.

Introducing lesions in the SubLC and another pontine nucleus, called the pontis oralis, caused significant changes in muscle tone and twitching. Lesions in the two pontine nuclei reduced periods of atonia but not the number of muscle twitches—in effect decoupling the key components of REM sleep, twitching and atonia. Lesions in the DLPT had the opposite effect: increased atonia and significantly less muscle twitching.

Altogether, the authors argue, these results show that sleep development elaborates on elementary components already in place soon after birth. If the neural mechanisms of infant and adult sleep were entirely different, then sleep might serve different purposes in infancy and adulthood. But the striking parallels outlined in this study suggest a developmental continuity between the two states. They also chart a course for future study that might even test Roffwarg’s view that the neonatal brainstem primes the central nervous system for the sensory challenges that lie ahead—and could even be the stuff that dreams are made of.
 

- (2005) Infant Sleep: A Precursor to Adult Sleep? PLoS Biol 3(5): e168
 

Print PDF (35K)

 
Subscribe to Sleep Disorders Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030168

Published: April 19, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.


Related Sleep Disorders News

Risk Factors For Developing Complications From Sleep Apnea Surgery
Studying sleep deprivation's effect on decisions
New sleep gene discovery wakes up scientists
Diphenhydramine Does Not Improve Infant Sleep
People sleep even less than they think
Computer models may reveal what makes human body clock tick
New fruit fly protein JET illuminates circadian response to light
CBT More Effective Than Zopiclone in Insomnia
Severe hot flashes associated with chronic insomnia
Acting out vivid dreams may forewarn of more serious illness


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us