XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
  Depression
  Neuropsychiatry
  Personality Disorders
  Bulimia
  Anxiety
  Substance Abuse
  Suicide
  CFS
  Psychoses
  Child Psychiatry
  Learning-Disabilities
  Psychology
   Cognitive Science
   Psychophysiology
   Behavioral Science
  Forensic Psychiatry
  Mood Disorders
  Sleep Disorders
  Peri-Natal Psychiatry
  Psychotherapy
  Anorexia Nervosa
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Nature Neuroscience

Cognitive Science Channel
subscribe to Cognitive Science newsletter

Latest Research : Psychiatry : Psychology : Cognitive Science

   DISCUSS   |   EMAIL   |   PRINT
We do not feel with our sensory cortices
Nov 8, 2005, 21:43, Reviewed by: Dr.

“I think that we do not feel with our sensory cortices,” Romo said. Perceptions instead arise in higher-order brain areas from a combination of sensation, attention, and expectation. “The sensory representation is [just] to confirm something that you have already thought.”

 
Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo and his colleague Victor de Lafuente. The scientists found that monkeys' perceptions of touch match brain activity in the frontal lobe, an area that assimilates many types of neural information.

One of neuroscience's most difficult questions concerns how the brain converts simple sensory inputs to complete perceptual experiences. Many neuroscientists assume that perceptions arise in the sensory cortices, which are the first areas of the brain to process information coming in from sense organs, Romo said. Some recent research, however, has hinted that activity in other parts of the brain may also contribute to sensory perception.

When it comes to the sense of touch, a stimulus at the skin triggers an impulse that travels first to an area at the top of the brain called the primary somatosensory cortex (S1). The information then moves to other parts of the brain, where it can contribute to memory, decision-making, and motor outputs.

To explore what regions of the brain contribute to sensory perception, Romo and de Lafuente analyzed neural activity associated with the sense of touch in macaque monkeys. The researchers touched the monkeys' fingertips with a painless stimulus that sometimes vibrated and sometimes did not. The intensity of the vibration varied, so sometimes it was easy for the monkeys to tell that the vibration was on, while other times the vibrations were so weak that the monkeys couldn't always detect them. The monkeys were trained to indicate to the researchers whether the stimulus was vibrating or still, and they were rewarded with treats when they were correct.

The scientists found that activity in S1 neurons, where touch information first arrives, correlated directly with the strength of the stimulus; when the strength of the vibrations was more intense, the S1 neurons' fired more rapidly. However, these neurons' activity did not correlate with the monkeys' behavioral responses. Their firing rates were directly associated with the stimulus intensity, whether the monkeys consciously felt and responded to the stimulus or not.

Romo and de Lafuente also recorded neuronal activity in the medial premotor cortex (MPC), a region of the brain's frontal lobe that is known to be involved in making decisions about sensory information. Activity here did mirror the monkeys' subjective responses to the vibrating probe. MPC neurons responded in an all-or-none manner; they fired when the monkey thought the vibrations were there—even if they weren't—and they didn't fire when the monkey thought the vibrations were absent—even if they were actually occurring.

These results indicate that the monkeys' perceptions arise not from brain activity in the sensory cortex itself, but from activity in the frontal lobe MPC, Romo said.

The MPC “is very interesting,” Romo said. “Apparently, it's able to pull information from memory and from the sensory areas, and also link this activity to the motor apparatus” so that the monkeys can physically indicate what they think is happening.

To clinch the MPC's association with the monkeys' perceptions, the researchers used an electrode to apply weak electrical stimulation to MPC neurons. They found that stimulating these neurons made the monkeys more likely to respond that they perceived a vibration, whether the vibrating stimulus was occurring or not.

Romo and de Lafuente also found that MPC neurons began to fire before the stimulus even touched the monkeys' fingertips. Romo believes this is because the monkey is expecting the stimulus and the neurons fire in anticipation.

“I think that we do not feel with our sensory cortices,” Romo said. Perceptions instead arise in higher-order brain areas from a combination of sensation, attention, and expectation. “The sensory representation is [just] to confirm something that you have already thought.”
 

- Romo and de Lafuente, both of the Institute of Cellular Physiology at the National Autonomous University of Mexico, report their results in the December 2005 issue of the journal Nature Neuroscience, published early online on November 6, 2005.
 

www.hhmi.org

 
Subscribe to Cognitive Science Newsletter
E-mail Address:

 



Related Cognitive Science News

Mice learn set shifting tasks to help treat human psychiatric disorders
Broca's area also organizes behavioral hierarchies
Erotic images elicit strong response from brain
Prosopagnosia may affect 2 percent of population
Nerve cells in brain decide between apples and oranges
How Visual Stimulation Turns Up Bdnf Genes to Shape the Brain
Humans perceive more than they think they do
Specific Mechanisms May Not Exist For Facial Recognition
Scent of fear impacts cognitive performance
Older people with stronger cognitive skills walk at a safer pace


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us