XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
  Depression
  Neuropsychiatry
  Personality Disorders
  Bulimia
  Anxiety
  Substance Abuse
  Suicide
  CFS
  Psychoses
  Child Psychiatry
  Learning-Disabilities
  Psychology
   Cognitive Science
   Psychophysiology
   Behavioral Science
  Forensic Psychiatry
  Mood Disorders
  Sleep Disorders
  Peri-Natal Psychiatry
  Psychotherapy
  Anorexia Nervosa
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Cognitive Science Channel
subscribe to Cognitive Science newsletter

Latest Research : Psychiatry : Psychology : Cognitive Science

   DISCUSS   |   EMAIL   |   PRINT
Specific Mechanisms May Not Exist For Facial Recognition
Apr 7, 2006, 03:59, Reviewed by: Dr. Ankush Vidyarthi

“We found that faces aren’t special in the way many scientists once thought. Rather, they are particular group of objects which the brain has learned to distinguish very well, much as it would for any other similar objects that are critical to human survival and communication.”

 
Although the human brain is skilled at facial recognition and discrimination, new research from Georgetown University Medical Center suggests that the brain may not have developed a specific ability for “understanding faces” but instead uses the same kind of pattern recognition techniques to distinguish between people as it uses to search for differences between other groups of objects, such as plants, animals and cars.

The study, published in the April 6 edition of the journal Neuron, adds new evidence to the debate over how the brain understands and interprets faces, an area of neuroscience that has been somewhat controversial. Because the process of facial perception is complicated and involves different and widespread areas of the brain, there is much that remains unknown about how humans perform this task.

“We found that faces aren’t special in the way many scientists once thought,” says Maximilian Riesenhuber, PhD, assistant professor of neuroscience and senior author of the study. “Rather, they are particular group of objects which the brain has learned to distinguish very well, much as it would for any other similar objects that are critical to human survival and communication.”

Riesenhuber hopes that integrative research of this kind will help scientists better understand the neural bases of object recognition deficits in mental disorders, such as autism, dyslexia or schizophrenia. People with autism, for example, experience difficulty with recognizing faces, which might be caused by a defect on the neural level. Breakthroughs in this kind of research could someday lead to targeted therapies for the millions of people who suffer from these disorders.

“The findings are exciting because we are now going to apply this technique to probe the neural bases of face perception deficits in autism,” Riesenhuber said.

Because humans are so talented in recognizing faces, many in the scientific community have argued that the brain has developed unique mechanisms for understanding and distinguishing them. However, Riesenhuber and his team thought that a different model could help explain some of the existing knowledge about facial recognition, including a behavioral phenomenon known as the “inversion effect,” which has shown that turning a picture upside down has a strong effect on people’s ability to recognize faces whereas the ability to recognize other objects, such as houses, is affected only slightly.

“We think that this is because we are face ‘experts,’ having learned over many years to spot fine differences in upright faces, but not in inverted faces. That experience makes faces unique, but there’s nothing scientifically special about faces,” Riesenhuber says.

The Georgetown scientists hypothesized that facial recognition does not rely on face-specific mechanisms but instead uses the same neural mechanisms for faces that are used to discriminate other objects. Over the years, because of the importance of facial identity and expression for social communication, humans have simply developed a strong talent for recognizing and distinguishing faces. This experience with faces then leads to the learning of a population of neurons finely tuned to different faces, Riesenhuber says.

The researchers tested their theories using a computational model previously developed by Riesenhuber and his team to predict how different neurons would react during the recognition of non-face objects. They then showed that this simple model, even though not developed for face recognition, could quantitatively account for the inversion effect and make predictions about how selective the group of “face neurons” should be to explain human performance, which provided further evidence that it was unnecessary to postulate any kind of special processing in the brain for faces.

The researchers then tested these predictions against experimental data measured in a functional Magnetic Resonance Imaging (fMRI) machine, a high-powered imaging technology that can measure the brain activity of test subjects, and by other behavioral techniques. Subjects were shown pairs of images of similar human faces that had been morphed using computer graphics software, while the researchers observed how brain activation changed for more or less similar pairs of faces.

They found that a small group of neurons in the “fusiform face area,” an area of the brain generally thought to be responsible for face recognition, was highly selective for different faces, just as the model predicted they would behave.

“We knew that the fusiform face area is highly involved and necessary for us to understand faces, but we did not know what kind of processing was going on inside that ‘black box’,” he said. “By using a computational model to quantitatively link neuronal processing, brain imaging and behavior, we now have a mechanistic model describing which neurons are involved and how they are behaving when we look at faces.”
 

- April 6 edition of the journal Neuron
 

gumc.georgetown.edu

 
Subscribe to Cognitive Science Newsletter
E-mail Address:

 

Other authors on the paper include Xiong Jiang, PhD, Ezra Rosen, John VanMeter, PhD, and Tom Zeffiro, PhD, from Georgetown University Medical Center and Volker Blanz, from the Max-Planck-Institute in Germany.

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis—or “care of the whole person.” The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Comprehensive Cancer Center. For more information, go to http://gumc.georgetown.edu.


Related Cognitive Science News

Mice learn set shifting tasks to help treat human psychiatric disorders
Broca's area also organizes behavioral hierarchies
Erotic images elicit strong response from brain
Prosopagnosia may affect 2 percent of population
Nerve cells in brain decide between apples and oranges
How Visual Stimulation Turns Up Bdnf Genes to Shape the Brain
Humans perceive more than they think they do
Specific Mechanisms May Not Exist For Facial Recognition
Scent of fear impacts cognitive performance
Older people with stronger cognitive skills walk at a safer pace


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us