XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
First comprehensive study of human hair on nanometer level
Sep 9, 2005, 17:41, Reviewed by: Dr.

“We didn't know what we were looking for. People know a lot about hair, but nobody has used an AFM to really study the structure of hair. So we already knew some things, but otherwise we didn't know what to expect.”

 
Ohio State University researchers have just completed the first comprehensive study of human hair on the nanometer level.

Special equipment enabled Bharat Bhushan and his colleagues to get an unprecedented close-up look at a rogue's gallery of bad hair days – from chemically overprocessed locks to curls kinked up by humidity.

Ultimately, the same techniques could be used to improve lipstick, nail polish and other beauty products, said Bhushan , Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State .

His specialty is nanotribology – the measurement of very small things, such as the friction between moving parts in microelectronics.

At first, hair seemed like an unlikely study subject, he said. Then he was invited to give a lecture to scientists at Procter & Gamble Co.

“It turns out that, for hair, friction is a major issue,” he said. Everyday activities like washing, drying, combing and brushing all cause hairs to rub against objects and against each other, he explained. Over time, the friction causes wear and tear – two processes that he and his colleagues are very familiar with, though they're normally studying the wear between tiny motors and gears.

“We realized that beauty care was an emerging area for us and we should dive in,” Bhushan said.

He consulted for the company until P&G became an industrial partner in his laboratory, supplying him with samples of healthy and damaged hair. The Ohio State engineers examined hairs under an atomic force microscope (AFM), a tool that let them scratch the surface of hairs and probe inside the hair shaft with a very tiny needle. They published their results in the journal Ultramicroscopy, in a paper now available on the Web.

Among their findings: hair conditioners typically do not evenly cover the entire hair shaft.

P&G recently developed a new formula with additives to make the conditioner coat the hair evenly. In tests, Bhushan found that the new conditioner did coat hair more evenly.

Meanwhile, they examined healthy and damaged hairs under an electron microscope and an AFM, and simulated everyday wear and tear by rubbing hairs together and against polyurethane film to simulate skin.

“We didn't know what we were looking for,” Bhushan said. “People know a lot about hair, but nobody has used an AFM to really study the structure of hair. So we already knew some things, but otherwise we didn't know what to expect.”

Under the electron microscope, individual hairs looked like tree trunks, wrapped in layers of cuticle that resembled bark. In healthy hair, the cuticle edges lay flat against the hair shaft, but as hair gets damaged from chemical treatments or wear and tear, the cuticle edges begin to peel away from the shaft. That much was already known.

The researchers simulated what happens when damaged hair is exposed to humidity; the hairs plump up, and the cuticles stick out even further, leading to frizz. More frizz meant more friction – a fact confirmed by the AFM as researchers dragged a tiny needle across the surface.

Conditioner tends to stick to the cuticle edges, and can make the hair sticky on the nanometer scale. The researchers determined that by poking the hair shaft with the needle, and measuring the force required to pull it away.

They also probed inside hairs to measure the hardness of different layers of the shaft. Hair has a very complex structure, Bhushan said, and these first ultra-precise measurements of interior structure could one day lead to new products that treat hair from the inside.

In the future, he thinks his AFM techniques could be used to develop wear-resistant nail polishes and lipsticks.
 

- They published their results in the journal Ultramicroscopy, in a paper now available on the Web.
 

Ohio State University

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 

Bhushan conducted this work with graduate student Carmen LaTorre and postdoctoral researchers Nianhuan Chen and Guohua Wei, all of Ohio State .

Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us