XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
Selenium Speeds Enzymatic Reactions
Nov 8, 2005, 17:44, Reviewed by: Dr.

The authors suggest the explanation for these findings relates to a difference in the catalytic mechanism of selenocysteine- and cysteine-containing enzymes. The substrate for both enzyme types, methionine-R-sulfoxide, is found within oxidized proteins. The job of both enzymes is to reduce this compound back to the amino acid methionine. Both do so by accepting an oxygen atom from the sulfoxide.

 
At the heart of every reaction of every cell lies an enzyme, a protein catalyst. At its active site—a special pocket on its surface—it binds reactants (substrates) and rearranges their chemical bonds, before releasing them as useful products. Rearranging some bonds may require help from certain chemical elements that are present in trace amounts. Many enzymes place these elements at the center of their active sites to do the most critical job.

Selenium is one such element. In large quantities, selenium is toxic, but, in trace amounts, it is absolutely essential for life in many organisms, including humans. Selenium is present in proteins in the form of selenocysteine, a rare amino acid that helps promote antioxidant reactions. These selenocysteine-containing proteins are called selenoproteins. One important selenoprotein is the enzyme methionine-R-sulfoxide reductase (MsrB) 1, whose job is to repair proteins injured by oxidative damage, caused by sunlight, toxic chemicals, or a variety of other insults.

In mammals, there are two other forms of MsrB, which also can efficiently perform this task, but use the abundant amino acid cysteine instead of selenocysteine. So why do cells go to the trouble and metabolic expense of acquiring selenium from the environment? In this issue, Hwa-Young Kim and Vadim Gladyshev explore the details of active-site chemistry of these three related enzymes, and show that the selenoprotein form employs a different catalytic mechanism.

The authors began by identifying three key amino acids in the active site of the cysteine-containing forms, which did not occur in the selenoprotein MsrB1. When any of these amino acids were mutated, the activity of the cysteine-containing enzymes was greatly diminished. This result indicates that these amino acids likely play a role at the active site, a supposition supported by previous work on related enzymes in bacteria.

Kim and Gladyshev next systematically mutated MsrB1 to include one, two, or all three of these amino acids, and discovered that inclusion of one or any combination of them diminished activity of the selenocysteine-containing enzyme. This suggested that while these amino acids support the mechanism of the cysteine-containing forms, they interfere with the mechanism of the selenoprotein. Not surprisingly, when the selenium was removed from MsrB1, the enzyme was significantly impaired. But when the three amino acids were added to this crippled enzyme, they restored some of the diminished activity, probably by carrying out the same mechanism they do in the cysteine-containing enzymes.

The authors then inserted a selenium atom into each of the cysteine-containing enzymes, in the same spot in the active site where it sits in MsrB1. They found that the initial activity of each enzyme was increased over 100-fold, indicating the inherent capacity of selenium to promote catalytic activity. These souped-up enzymes were unable to complete the reaction, however, because they lacked other features of MsrB1's active site. Further scrutiny of the enzymes revealed these critical features, and inserting them allowed the artificial selenoproteins to carry out the entire reaction.

The authors suggest the explanation for these findings relates to a difference in the catalytic mechanism of selenocysteine- and cysteine-containing enzymes. The substrate for both enzyme types, methionine-R-sulfoxide, is found within oxidized proteins. The job of both enzymes is to reduce this compound back to the amino acid methionine. Both do so by accepting an oxygen atom from the sulfoxide.

In the presence of selenium, the oxygen temporarily binds to the selenium. The selenium's electrons then shift to bond with a sulfur on a neighboring cysteine amino acid, kicking out the oxygen as part of a water molecule. Finally, the selenium-sulfur bond is broken and the enzyme is restored to its original state by the intervention of thioredoxin, a ubiquitous cell molecule whose job is to undo just such temporary linkages in a wide variety of enzymes.

Without selenium, the oxygen binds directly to sulfur, and thioredoxin intervenes to form the water and restore the sulfur. This reaction occurs in fewer steps, but is slower. The authors propose that the evolution of selenium-containing MsrB1 from cysteine-containing forms was likely favored by the higher rate of reaction it offered, although this trend is likely limited by the requirement for changes in other portions of the enzyme to accommodate the trace element. The authors suggest that selenium provides inherent catalytic advantages to certain types of enzymatic reactions, even though utilization of these advantages is sometimes tricky. If so, manipulation of related enzymes by insertion of selenium may increase their catalytic efficiency, perhaps much above that designed by nature. This may offer advantages for some biotechnology and biomedical applications that depend on antioxidants. —Richard Robinson
 

- (2005) Selenium Speeds Reactions. PLoS Biol 3(12): e419
 

Read Research Article (Open Access) at PLoS Journal Website

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 

PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.

DOI: 10.1371/journal.pbio.0030419

Published: November 8, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Lifes Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us