XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Cancer Channel
subscribe to Cancer newsletter

Latest Research : Cancer

   DISCUSS   |   EMAIL   |   PRINT
Researchers link aberrant 'microRNA' expression to human cancer
Jun 9, 2005, 13:41, Reviewed by: Dr.

"These studies change the landscape of cancer genetics by establishing the specific microRNAs expressed in most common cancers and investigating the effects of microRNAs on cancer development and cancer genes,"

 
Over the past few years, scientists have discovered that a new class of genetic regulators called "microRNAs" influences normal human growth and development. Now, researchers have found that microRNAs also play an important role in human cancer.

"These studies change the landscape of cancer genetics by establishing the specific microRNAs expressed in most common cancers and investigating the effects of microRNAs on cancer development and cancer genes," says cancer expert Dr. Paul Meltzer, who did not participate in the studies.

In one of the new studies, researchers at Cold Spring Harbor Laboratory, led by Dr. Gregory Hannon, and at the University of North Carolina, Chapel Hill, led by Dr. Scott Hammond, focused on a segment of human chromosome 13 that was known to be amplified (i.e. present in excess) in several tumor types including B-cell lymphoma. The researchers observed that this DNA segment, referred to as the mir-17-92 cluster, has the potential to encode seven microRNAs.

To determine whether excess expression of microRNAs encoded by the mir-17-92 cluster might be involved in cancer, the scientists first examined whether one or more of the microRNAs was expressed at abnormally high levels in four B-cell lymphoma cell lines in which the mir-17-92 cluster was amplified, compared to normal B-cells and to five leukemia and lymphoma cell lines in which the mir-17-92 cluster was not amplified.

The researchers found that indeed, five microRNAs encoded by the mir-17-92 cluster were overexpressed specifically in the B-cell lymphoma cell lines bearing an amplified mir-17-92 cluster.

Next, the scientists examined the expression levels of the mir-17-92 microRNAs in human tumor biopsies including 46 lymphomas and 47 colorectal carcinomas. They observed significant (greater than fivefold) overexpression of the mir-17-92 microRNAs in 65% of the lymphomas, with an average mir-17-92 microRNA overexpression of 10-fold in those lymphomas (and a high of 82-fold microRNA overexpression). In contrast, 15% of the colorectal carcinomas displayed greater than fivefold mir-17-92 microRNA overexpression.

These findings suggested that mir-17-92 microRNA overexpression might contribute to human cancer, particularly to B-cell lymphoma but also to other forms of the disease.

To test that idea directly, the researchers examined whether elevated expression of mir-17-92 or other microRNAs could accelerate the onset of cancer and/or decrease survival in a mouse model of B-cell lymphoma.

As expected, control animals developed B-cell lymphoma after about 2 months, and the overall survival of this group (n = 12) after 3 months was 75%.

In stark contrast, animals in which the mir-17-92 microRNAs were overexpressed experienced accelerated development of B-cell lymphoma (40 days compared to 2 months), and--significantly--none of the animals in this group (n = 14) survived after 3 months, compared to the 75% survival rate of the control animals in which the mir-17-92 microRNAs were not overexpressed.

Moreover, tumors induced in mir-17-92 microRNA-overexpressing animals consistently invaded organs outside the lymphoid compartment (including liver, lung, and kidney), and lacked the extensive "programmed cell death" or apoptosis observed in the control tumors and which helps keeps tumors in check. These findings indicate that overexpression of the mir-17-92 microRNAs can contribute to highly malignant tumors.

Collectively, the results of the study establish that microRNAs can function as bona fide oncogenes, leading the researchers to propose that such oncogenic microRNAs be designated "oncomiRs," with mir-17-92 being oncomiR-1.
 

- The findings are published in tomorrow's issue of the journal Nature (June 9).
 

www.cshl.org

 
Subscribe to Cancer Newsletter
E-mail Address:

 



Related Cancer News

Gene Expression Profiling Not Quite Perfected in Predicting Lung Cancer Prognosis
Breast cancer chemotherapy may deterioration in cognitive function
I-ELCAP study: Lung cancer can be detected early with annual low-dose CT screening
Genomic signatures to guide the use of chemotherapeutics
Elderly Breast Cancer Patients May Be Under-Diagnosed And Under-Treated
Listening to the sound of skin cancer
Tissue Geometry Plays Crucial Role in Breast Cell Invasion
Regulatory Approval for New Cotara(R) Brain Cancer Clinical Trial
CDK2/FOXO1 as drug target to Prevent Tumors
Key to lung cancer chemotherapy resistance revealed


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us