XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
   Non-Hodgkin's Lymphoma
   Multiple Myeloma
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Blood Channel
subscribe to Blood newsletter

Latest Research : Cancer : Blood

   DISCUSS   |   EMAIL   |   PRINT
More potent and highly selective therapy with AMN107 effective in treating Gleevec-resistant CML
Feb 19, 2005, 16:53, Reviewed by: Dr.

"We're very encouraged by the results so far," remarks Griffin, who is also a professor of medicine at Harvard Medical School. "This is an elegant example of how rational drug design �� developing drugs based on a molecular understanding of cell structures and processes �� can be used to attack human diseases."

 
A laboratory study led by researchers at Dana-Farber Cancer Institute has shown that a potent and highly selective therapy for chronic myelogenous leukemia (CML) may ultimately be more effective than Gleevec�, the current standard of care. The researchers report in the February issue of Cancer Cell that the new compound, AMN107, is about 20 times more potent than Gleevec and is effective in treating Gleevec-resistant disease in model systems. Discovered by and in development with Novartis Pharma AG, AMN107 is a small molecule tyrosine kinase inhibitor.

"While Gleevec represents a major treatment advance for CML � approximately 95 percent of patients treated with Gleevec achieve remission � there clearly is a need for therapies that produce longer remissions, are active against advanced disease, and can be used when Gleevec loses effectiveness," says Dana-Farber's James Griffin, MD, senior author of the study.

Gleevec shuts down CML by blocking the function of Bcr-Abl, the abnormal tyrosine kinase protein in the leukemic cells that causes them to grow too quickly. However, it does not bind very tightly to this protein, and patients can develop a resistant type of Bcr-Abl that no longer binds to Gleevec at all.

Using rational drug design to circumvent these shortcomings, researchers at Novartis determined the crystal structure of Bcr-Abl, and then constructed compounds that would lock into the receptor more securely than Gleevec. Investigators at Dana-Farber tested the new compounds to measure their effectiveness against CML in laboratory cell cultures and mice with the disease.

Data from the study published in Cancer Cell showed that in experiments with laboratory samples of CML cells, AMN107 killed the cells more effectively than Gleevec. In follow-up studies with mice with a human form of CML, AMN107 produced lengthier remissions than Gleevec and triggered remissions in animals in which the disease had become resistant to Gleevec. Side effects in the animals were minimal.

Synthesized in August 2002, AMN107 entered early Phase I clinical studies in May 2004 � 21 months later. Data presented last December at the American Society of Hematology showed that AMN107 had demonstrated significant clinical activity in the most challenging setting: Gleevec resistant accelerated and blast crisis CML patients.

"We're very encouraged by the results so far," remarks Griffin, who is also a professor of medicine at Harvard Medical School. "This is an elegant example of how rational drug design �� developing drugs based on a molecular understanding of cell structures and processes �� can be used to attack human diseases."

The findings contribute to a larger Dana-Farber research effort, dubbed the "Kinase Project," which seeks to identify abnormal tyrosine kinases -- enzymes that spark or halt growth -- in cancer cells and test agents known to act against them.
 

- Published in Cancer Cell
 

Dana-Farber Cancer Institute

 
Subscribe to Blood Newsletter
E-mail Address:

 

The Cancer Cell study's lead author is Ellen Weisberg, PhD, of Dana-Farber. Co-authors include researchers at Dana-Farber, Novartis, Brigham and Women's Hospital, and Children's Hospital Boston.

The preclinical study was conducted as part of a research collaboration between Novartis Pharma AG and Dana-Farber.

Dana-Farber Cancer Institute (www.danafarber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.


Related Blood News

Medication errors affect children's leukemia treatment
JAK-STAT pathway inhibitors are likely to be effective against some leukemias
HO-1 in sickle cell disease
Dasatinib treats resistant cases of CML
HBZ protein enhance ability of HTLV-1 to establish persistent infection
Gene expression signature for Burkitt lymphoma identified
Bcr-Abl mutation and the loss of Arf genes triggers an aggressive form of ALL
New simple and inexpensive test for follow-up of acute lymphoblastic leukemia (ALL)
miRNAs abnormal signalling may lead to platelet-related leukemias
DNA itself can act as a mutagen


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us