XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Pancreatic Cancer Channel
subscribe to Pancreatic Cancer newsletter

Latest Research : Cancer : Pancreatic Cancer

   DISCUSS   |   EMAIL   |   PRINT
Protein responsible for unchecked cell growth found
Jun 12, 2005, 05:48, Reviewed by: Dr.

"Previously, we found that Smad7 blocks the ability of TGF-beta to inhibit the growth of these cancer cells," said study co-author Dr. Nichole Boyer Arnold, a postdoctoral fellow at DMS and a member of the Norris Cotton Cancer Center. "In this study, we discovered that Smad7 is able to do this by suppressing the function of the retinoblastoma (RB) protein." The RB protein is crucial to empowering TGF-beta to control cell growth.

 
Making new strides in their ongoing effort to understand mechanisms behind the relentless growth of cancer cells, researchers at Dartmouth Medical School have found a promising key that may open doors to future treatments in pancreatic and other forms of cancer. The innovation lies in manipulating an overabundance of chemo-resistant molecules in pancreatic cancer that inactivate pathways that would normally suppress cell growth.

Published in the June 10 issue of the Journal of Biological Chemistry, the study was led by Dr. Murray Korc, a pioneer in early research on growth factor receptors in pancreatic cancer, and chair of the department of medicine at Dartmouth Medical School (DMS) and Dartmouth-Hitchcock Medical Center, and a member of the Norris Cotton Cancer Center. His team's research has focused on suppressing pancreatic tumor growth by determining the mechanisms that enable the cells to grow so quickly.

"Pancreatic cancer is an incredibly resilient and aggressive disease," said Korc. "It grows quickly without causing symptoms, is resistant to chemotherapy, has a strong tendency to metastasize, and patients are often beyond surgery when it is diagnosed."

This study builds on the team's prior research on a molecule called Smad7, found in half of all human pancreatic cancers. Smad7 lies in pathways that normally play an important role in regulating cell growth and often prevents cells when proliferating too quickly. But Smad7 interferes with these pathways that are normally regulated by TGF-beta molecules, so they cannot regulate the growth of cells, and these cells continue to grow unchecked until they eventually become tumors.

"Previously, we found that Smad7 blocks the ability of TGF-beta to inhibit the growth of these cancer cells," said study co-author Dr. Nichole Boyer Arnold, a postdoctoral fellow at DMS and a member of the Norris Cotton Cancer Center. "In this study, we discovered that Smad7 is able to do this by suppressing the function of the retinoblastoma (RB) protein." The RB protein is crucial to empowering TGF-beta to control cell growth.

DMS researchers also found that pancreatic cancer cells generate TGF-�� molecules at a much faster rate than normal. "It's a devilish mechanism," explains Korc. "Smad7 not only prevents TGF-beta molecules from slowing the cancer down, but enables them to multiply at a high rate, and thus gives the cancer another growth benefit. In addition, TGF-beta molecules are still able to stimulate blood vessel formation and enhance the growth of adjoining cells, which further increases the cancer's ability to metastasize."

Korc likens the process to a scorpion that not only has a newfound immunity to his own poison, but every time he stings himself, he gets bigger and more powerful.

"Now that we know how Smad7 is able to inactivate TGF-beta growth suppressive effects by preventing RB from functioning properly, we can focus our research on the RB protein," said Korc. They hope to find a way to disrupt Smad7's ability to affect the RB protein in human pancreatic cancers. Of the 31,000 people in the US that get pancreatic cancer this year, 30,300 will die from it, according to Korc, and most patients die within six months, which is why these advances in new therapies are so important.

He notes that even if his lab is able to overcome these problems in RB, it will not lead to a "cure" for pancreatic cancer. Pancreatic patients are under attack from so many different directions that the answer will not lie in one particular aspect of therapy. The authors hope that their work will add to a growing arsenal of treatments that, when combined in a form of therapy individualized to each patient, will have an impact on this devastating disease.
 

- June 10 issue of the Journal of Biological Chemistry
 

www.dartmouth.edu

 
Subscribe to Pancreatic Cancer Newsletter
E-mail Address:

 

This study was funded by the National Institutes of Health and by a postdoctoral fellowship from the George E. Hewitt Foundation for Medical Research.

Related Pancreatic Cancer News

Vitamin D May Cut Pancreatic Cancer Risk by Nearly Half
Post operative gemcitabine combination therapy improves survival in pancreatic cancer
Treatment of pancreatic carcinoma by adenoviral mediated gene transfer of vasostatin in mice
FDA Approves Tarceva for Advanced Pancreatic Cancer
Xeloda Dramatically Extends Survival Rates in Pancreatic Cancer
Red Meat Associated With Pancreatic Cancer Risk
3D MRI Useful in Detecting Most Lethal Cancers
New onset of hyperglycemic diabetes in adults age 50 or older - signal of underlying pancreatic cancer
Protein responsible for unchecked cell growth found
Disease progression model of pancreatic cancer developed


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us