RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
AIDS Channel

subscribe to AIDS newsletter
Latest Research : Infectious Diseases : AIDS

   EMAIL   |   PRINT
Antibiotic might fight HIV-induced neurological problems

Apr 29, 2005 - 7:18:00 PM
"If this preliminary observation holds up, minocycline could be really important for treating HIV infection in developing countries where access to traditional antiretroviral drugs is very limited," says Zink. "Most of the 40 million people with HIV infection live in these countries."

 
[RxPG] By studying animals, Johns Hopkins researchers have discovered that the antibiotic minocycline might help alleviate HIV's negative effects on the brain and central nervous system, problems that can develop even though antiretroviral therapy controls the virus elsewhere in the body.

Five monkeys infected with simian immunodeficiency virus (SIV), a very close relative of HIV, and treated with minocycline had less damage to brain cells, less brain inflammation, and less virus in the central nervous system than six infected monkeys that received no treatment, the researchers report in the April 27 issue of the Journal of the American Medical Association.

"In people, antiretroviral treatments do a great job of controlling HIV in blood, but most of the drugs don't cross the blood-brain barrier very well," says Christine Zink, D.V.M., Ph.D., professor of comparative medicine at the Johns Hopkins University School of Medicine. "As a result, even though the infection seems to be controlled, it may still cause damage in the brain. And because people are living with HIV longer than ever, the prevalence of neurological damage is increasing. Currently, there's no drug to treat it directly."

In use for more than 30 years, minocycline was specifically designed to cross the blood-brain barrier, the biological "wall" that limits what can pass from the blood into the brain. Other researchers have reported that this antibiotic can protect brain cells in animal models of other diseases -- multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, stroke and more. The drug is being tested in early clinical trials for some non-HIV-related conditions.

"Last year we discovered that SIV triggers some of the same biological pathways of cell death and inflammation as these other diseases," says Sheila Barber, Ph.D., assistant professor of comparative medicine. "Testing minocycline in our animal model of HIV infection was really a logical next step."

A multicenter clinical trial is being planned to test whether minocycline has the same effects in HIV-infected people as it does in SIV-infected monkeys, but it is not expected to start until sometime next year.

"It is too early to recommend minocycline for patients," emphasizes Ned Sacktor, M.D., an associate professor of neurology at the Johns Hopkins Bayview Medical Center who wasn't involved with the current study, but who is one of the physicians planning the clinical trial. "One needs to proceed with a clinical research trial first to prove its safety and efficacy against HIV-associated cognitive impairment."

SIV and HIV both affect the same tissues in the same way and use the same tricks to infect cells and outwit treatments, but SIV infects only non-human primates, and HIV only infects people. Antiretroviral drugs target and interfere with the viral proteins needed to accomplish this.

In contrast, minocycline doesn't target the virus or its proteins. While they're still working out the details, the researchers have shown that minocycline "calms down" as yet undefined biological pathways that involve two specific proteins -- MCP-1 and p38 -- implicated in damage in neurodegenerative diseases.

The MCP-1 protein, when secreted from brain cells under attack from HIV or SIV, attracts infection-fighting cells known as macrophages, which then enter the brain. The influx of these cells contributes to swelling and inflammation known as encephalitis. The other protein, p38, helps trigger a series of events that result in a cell's programmed death, called apoptosis.

Only one of the five treated monkeys showed any signs of encephalitis, and that monkey's condition was deemed mild by a set of standard measures. After the same amount of time -- 84 days after infection -- five of the six untreated monkeys had evidence of moderate or severe encephalitis and much more physical evidence of damage to brain cells, the researchers report.

"The infection in the animal model is predictable and aggressive, so we can get meaningful data by studying fewer animals," says Zink, who was on the team that developed the model about six years ago. "It's a really demanding test of a potential treatment for HIV."

The animal model has already helped improve understanding of how HIV might affect the brain, and this is the first time it's been used to test a potential treatment. Studies with the animals are augmented by laboratory experiments with cells to clarify observations.

Notably, these laboratory experiments have shown that minocycline somehow suppresses replication of HIV and SIV in macrophages -- the immune cells recruited to the brain during HIV infection -- and lymphocytes -- immune cells that carry "sleeping" HIV and SIV even when antiretroviral treatment is effective.

"If this preliminary observation holds up, minocycline could be really important for treating HIV infection in developing countries where access to traditional antiretroviral drugs is very limited," says Zink. "Most of the 40 million people with HIV infection live in these countries."



Publication: April 27 issue of the Journal of the American Medical Association
On the web: jama.ama-assn.org 

Advertise in this space for $10 per month. Contact us today.


Related AIDS News
4 UCLA stem cell researchers receive CIRM Early Translational grants
Professor Vanessa Hayes awarded for exceptional Africa-related work
Plant-based compound may inhibit HIV
Innovative intervention program improves life for rural women in India living with HIV/AIDS
The American Society for Microbiology honors Baligh Yehia
Thomas J. Coates receives 2013 Elizabeth Fries Health Education Award
Scientists find ethnicity linked to antibodies
2013 Canada Gairdner Global Health Award goes to King Holmes for STD work
Study identifies ways to increase HIV testing, reduce HIV infection
A device to speed up HIV diagnostic test

Subscribe to AIDS Newsletter

Enter your email address:


 Additional information about the news article
The research was funded by the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke. Authors on the paper are Zink, Barber, Jennifer Uhrlaub, Jesse DeWitt, Tauni Voelker, Brandon Bullock, Joseph Mankowski and Janice Clements of Johns Hopkins; and Patrick Tarwater of the University of Texas Health Science Center's School of Public Health, El Paso, Texas.

Zink and Barber are named as inventors on a pending patent application for minocycline to treat HIV infection. The patent will be held by The Johns Hopkins University.

On the Web:
http://jama.ama-assn.org
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)