RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
AIDS Channel

subscribe to AIDS newsletter
Latest Research : Infectious Diseases : AIDS

   EMAIL   |   PRINT
Study defines effective microbicide design for HIV/AIDS prevention

Oct 1, 2006 - 11:12:00 PM , Reviewed by: Himanshu Tyagi
Duke University biomedical engineers have developed a computer tool they say could lead to improvements in topical microbicides being developed for women to use to prevent infection by the virus that causes AIDS. Providing women with improved microbicides is a pressing challenge because women now account for a growing number of new infections worldwide, the researchers said. By applying fundamentals of physics and chemistry, the researchers developed a computer model that can predict the effectiveness of various microbicidal recipes in destroying human immunodeficiency virus (HIV) before it reaches vulnerable body tissues. Using the tool, the researchers have determined that a thin, long-lasting coating of microbicide delivered to susceptible tissues in a woman's vagina can significantly reduce the spread of HIV.

 
[RxPG] Duke University biomedical engineers have developed a computer tool they say could lead to improvements in topical microbicides being developed for women to use to prevent infection by the virus that causes AIDS.

Providing women with improved microbicides is a pressing challenge because women now account for a growing number of new infections worldwide, the researchers said.

By applying fundamentals of physics and chemistry, the researchers developed a computer model that can predict the effectiveness of various microbicidal recipes in destroying human immunodeficiency virus (HIV) before it reaches vulnerable body tissues.

Using the tool, the researchers have determined that a thin, long-lasting coating of microbicide delivered to susceptible tissues in a woman's vagina can significantly reduce the spread of HIV.

The findings emphasize a critical role for the "delivery vehicle," the various polymer gels or creams that carry the active antimicrobial ingredients, in determining the success or failure of microbicides, according to the researchers. Yet, they add, most scientists have concentrated on improving the antimicrobial compounds themselves, rather than their delivery.

"There is a huge push to produce microbicides that would have any effectiveness at all in reducing the spread of HIV, particularly in places like Africa and Southeast Asia where the disease is rampant," said David Katz, a professor of biomedical engineering at Duke's Pratt School of Engineering and one of the computer tool's developers. "We are developing methodologies to make the next round of microbicides even better."

"Existing microbicides are excellent in terms of their ability to inactivate HIV," added Anthony Geonnotti, the study's lead investigator, who is a Ph.D. candidate in Katz's laboratory. "Improvements to future generations of microbicides will largely depend on the delivery system and applicators." However, he added, advances made through continued research on new and better drugs should not be discounted.

In addition to their role in drug delivery, microbicide formulations can act as physical barriers or filters to slow HIV's passage from semen into body tissues, Geonnotti explained. That slowing would give the HIV-neutralizing ingredient in the microbicide layer, as well as the body's natural defenses against HIV, more time to work. If left untreated, HIV attacks a person's immune system and can progress to AIDS, acquired immune deficiency syndrome.

The HIV pandemic continues to overwhelm current preventative measures as an estimated 12,000 people contract the infection each day, the researchers said. Increasingly, a disproportionate number of women are becoming infected. In several African countries, for example, HIV infection rates among young women between the ages of 15 and 24 are more than three times higher than among their male counterparts.

Women are about twice as likely as men to contract HIV during vaginal intercourse, according to the federal Centers for Disease Control and Prevention. In developing countries particularly, cultural and socioeconomic inequities between the sexes also can leave women more susceptible.

"In many cases, women lack control over their abilities to protect themselves against the virus," Katz said. "Microbicide development is a response to the demonstrated need for new female-controlled methods for HIV prophylaxis."

In the current study, the researchers developed a mathematical model that simulates the biological interaction between HIV contained in semen and the protective coating that accumulates on the lining of a woman's vagina after she applies a topical microbicide. The model describes the diffusion of the virus and active ingredients into the tissues, as well as the chemical inactivation of virus by the microbicidal agent.

The model is easily adapted to studying different active ingredients and delivery vehicles simply by changing the data entered, the researchers said. For example, researchers might specify the thickness of the expected coating layer, the initial concentration of microbicide in that layer, and the microbicide's documented ability to bind to and disable the viral particles.

The researchers demonstrated their new tool by applying it to the promising microbicide Cyanovirin-N, a protein with anti-HIV activity that has been well documented by other scientists.

"Our results suggest HIV neutralization is achievable if coating thicknesses on the order of 100 microns remain in place after sex," Geonnotti said. One hundred microns is the approximate width of a human hair. "Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer, as do ingredients that restrict viral passage," he said.

"Our findings demonstrate the need to pair potent active ingredients with well-engineered delivery vehicles, and they highlight the importance of the dosage form -- especially its ability to restrict viral diffusion and remain in place -- in microbicide effectiveness," Katz added.

More than 20 microbicidal chemical compounds are now in development or testing and five of them have reached the final phase of clinical trials. The Duke group's new model provides a "rational guide" for design specifications that could further improve such microbicides' ability to cut the rate of HIV spread, the researchers said.

The researchers now are conducting studies to experimentally measure the diffusion of viral particles through various delivery vehicles. They also are collaborating with other researchers on developing high-performance polymer gels that might provide a more substantial physical barrier to HIV.



Publication: The researchers reported their findings in the September 2006 Biophysical Journal.
On the web: www.duke.edu 

Advertise in this space for $10 per month. Contact us today.


Related AIDS News
4 UCLA stem cell researchers receive CIRM Early Translational grants
Professor Vanessa Hayes awarded for exceptional Africa-related work
Plant-based compound may inhibit HIV
Innovative intervention program improves life for rural women in India living with HIV/AIDS
The American Society for Microbiology honors Baligh Yehia
Thomas J. Coates receives 2013 Elizabeth Fries Health Education Award
Scientists find ethnicity linked to antibodies
2013 Canada Gairdner Global Health Award goes to King Holmes for STD work
Study identifies ways to increase HIV testing, reduce HIV infection
A device to speed up HIV diagnostic test

Subscribe to AIDS Newsletter

Enter your email address:


 Additional information about the news article
The study was funded by the National Institutes of Health.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)