RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
  Dementia
   Alzheimer's
  Parkinson's
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Alzheimer's Channel

subscribe to Alzheimer's newsletter
Latest Research : Aging : Dementia : Alzheimer's

   EMAIL   |   PRINT
Impaired clearance of amyloid-beta causes vascular damage in Alzheimer's disease

Jul 22, 2005 - 12:30:00 AM
These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer's disease and related cerebral amyloid angiopathies. And both studies confirm that Aβ generated by neurons accumulates in blood vessels following attempted clearance of excess Aβ peptides.

 
[RxPG] New research suggests that accumulation of amyloid-β peptides in cerebral blood vessels, as opposed to the brain itself, may be a more important pathological mediator of Alzheimer's disease. Two independent yet related articles describe such findings in the August issue of The American Journal of Pathology. Both articles are highlighted on the Journal's cover.

Alzheimer's disease, the most common form of progressive dementia, affects an estimated 4.5 million Americans according to the Alzheimer's Association. Amyloid-β (Aβ) deposition is a hallmark of Alzheimer's disease and other cerebral amyloid angiopathies. However, exactly how Aβ accumulates and causes damage is not fully understood.

In the first article, "Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP," Miao et al. describe early-onset Aβ deposition in Tg-SwDI mice. These mice express Aβ protein with mutations that are found in human early-onset cerebral amyloid angiopathy, causing specific accumulation of Aβ in cerebral blood vessels.

The Aβ peptides accumulated because they could not adequately cross the blood-brain barrier to be cleared from the brain. Over time, Aβ accumulation increased in the cerebral microvessels of the thalamus and subiculum of the brain. This resulted in degeneration of blood vessels as evidenced by reduced vessel density and increased apoptosis. Neuroinflammation also occurred as large numbers of microglia, along with inflammatory cytokines, were found at sites of Aβ accumulation.

The authors conclude that early-onset Aβ accumulation occurs predominantly in the cerebral microvasculature and appears largely responsible for the neuroinflammation in these mice. They also demonstrate the utility of Tg-SwDI mice in studying cerebral amyloid angiopathies, such as Alzheimer's disease.

The second article, by Kumar-Singh et al., "Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls," utilizes two different transgenic mice: Tg2576 and PSAPP. Both models produce dense-core plaques, highly concentrated deposits of Aβ, and were used to investigate the possible association of blood vessels with Aβ deposits.

In these mice, dense-core plaques associated with cerebral vessels with high specificity. There was also evidence of vessel damage and blood-brain barrier damage, resulting in release of Aβ through the vessel walls and accumulation of plaques next to the vessels. These data confirm previous observations in humans that senile plaques associate with blood vessels, especially in the vasculotropic Flemish type of Alzheimer's disease.

The authors propose a model of dense-core plaque formation that is dependent on cerebral vessels. As Aβ is cleared from the brain, it exerts a cytotoxic effect on the endothelial cells of the vascular wall (a process that may be exacerbated if clearance is impaired). This leads to loss of vessel integrity and accumulation of Aβ in the area surrounding the compromised vessel wall. Eventually, the damage is so great that the blood vessel deteriorates beyond functional use and new vessels form to pick up the slack. The result is a multicentric dense-core plaque that associates with multiple vessels.

These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer's disease and related cerebral amyloid angiopathies. And both studies confirm that Aβ generated by neurons accumulates in blood vessels following attempted clearance of excess Aβ peptides. Thus, study of novel therapies that reduce the blood vessel-associated deposition of Aβ may prove beneficial to patients with Alzheimer's disease.



Publication: American Journal of Pathology
On the web: ajp.amjpathol.org 

Advertise in this space for $10 per month. Contact us today.


Related Alzheimer's News


Subscribe to Alzheimer's Newsletter

Enter your email address:


 Additional information about the news article
*Miao J, Xu F, Davis J, Otte-Höller I, Verbeek MM, Van Nostrand WE: Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP. Am J Pathol 2005, 167: 505-515

†Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C: Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol 2005, 167: 527-543

*Work was performed at Stony Brook University, New York. †Work was performed at the Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Belgium.

The American Journal of Pathology, the official journal of the American Society for Investigative Pathology (ASIP), seeks to publish high-quality original papers on the cellular and molecular mechanisms of disease. The editors accept manuscripts which report important findings on disease pathogenesis or basic biological mechanisms that relate to disease, without preference for a specific method of analysis. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, biological, animal, chemical and immunological approaches in conjunction with morphology.

 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)