RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
  Dementia
   Alzheimer's
  Parkinson's
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Alzheimer's Channel

subscribe to Alzheimer's newsletter
Latest Research : Aging : Dementia : Alzheimer's

   EMAIL   |   PRINT
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer’s, Huntington’s Diseases Characterised

Jul 26, 2006 - 12:22:00 PM , Reviewed by: Ankush Vidyarthi
“The frequency at which the nuclei resonate after being hit with a pulse is very specific to their specific position in the protein. So after we hit all of them with a pulse, it’s like hitting all the keys of a piano at the same time and it’s just an awful mess."

 
[RxPG] Scientists at North Carolina State University have effectively lifted the veil from an important protein that is linked to the prevention of neurodegenerative diseases like Alzheimer’s and Huntington’s.

Dr. John Cavanagh, professor of molecular and structural biochemistry, teamed with colleagues from the Mayo Clinic and Duke University to describe the shape of the protein, calbindin-D28K. Understanding a protein’s structure allows researchers to learn more about how it functions and interacts with other proteins, which, in this case, may provide clues to developing drugs to halt the diseases.

Calbindin-D28K is a protein that either grabs calcium from areas that have too much or serves as an on/off switch for further chemical reactions. It is known for its flexibility; it is found in the kidneys, pancreas, ocular nerve and in abundant quantities in the brain. Recent studies show, Cavanagh says, that it acts as a bodyguard in the brain, binding to and inhibiting caspase-3, a protein that stimulates plaque formation and tangle formation, which are hallmark characteristics of neurodegenerative disease. Until now, however, the structure of calbindin-D28K remained a mystery.

“If you don’t know the shape of the protein, you can’t figure out how it works,” Cavanagh says. “It took a long time – about five years – but we’ve characterized the structure of this protein and found where it binds caspase-3. Insight into how it binds to caspase-3 might lead to a way of exploiting those interactions to develop therapeutics.”

It took a long time to characterize calbindin-D28K, Cavanagh says, because it was initially a challenge to force cells to make enough protein in order to do the requisite studies. Additionally, many parts of the protein are very similar and so are extremely difficult to distinguish from each other.

The research team used nuclear magnetic resonance to get a high-resolution picture of what the protein looks like. In this painstaking technique – occurring inside machines that have magnetic fields several hundred times greater than the Earth’s magnetic pull – radio waves are bounced off the approximately 5,000 nuclei in the protein.

“When you hit a nucleus with a radiofrequency pulse, it resonates, sort of making its own little noise, like a tuning fork,” Cavanagh says. “The frequency at which the nuclei resonate after being hit with a pulse is very specific to their specific position in the protein. So after we hit all of them with a pulse, it’s like hitting all the keys of a piano at the same time and it’s just an awful mess. And remember, we’re doing this for 5,000 separate keys. Yet, we’re able to untangle this mess to find the specific frequency of each nucleus and relate that to where it lies in the protein.”

Cavanagh isn’t satisfied with this knowledge, however. He says the shape-shifting protein sometimes contains no calcium. When it grabs calcium, it changes its shape.

“This could be why the protein plays so many different roles,” Cavanagh says. “Proteins that change shape usually serve as on/off switches, but this protein also grabs calcium and takes it elsewhere. Now we’re working to determine the structure of this protein when it has no calcium.”



Publication: The research appears in the July 2006 edition of Nature Structural and Molecular Biology.
On the web: www.ncsu.edu 

Advertise in this space for $10 per month. Contact us today.


Related Alzheimer's News


Subscribe to Alzheimer's Newsletter

Enter your email address:


 Additional information about the news article
The National Institutes of Health, the American Foundation for Aging Research and the Kenan Institute for Engineering, Technology & Science supported the research.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)