RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
A Biotech Chip will Now Allow Rapid Screening of Drug Toxicity

Feb 12, 2005 - 10:27:00 AM

 
[RxPG]

Researchers at the University of California, Berkeley, and Rensselaer Polytechnic Institute have created a biotech chip that mimics the metabolic reactions in the human liver, allowing rapid screening of potential drugs to identify those activated by the liver and to weed out those made toxic.

"The MetaChip would allow testing a backlog of compounds for toxicity earlier in the drug discovery process – faster and more efficiently – and help remove a current bottleneck in the drug discovery process," said Douglas S. Clark, professor of chemical engineering at UC Berkeley.

The MetaChip, short for metabolizing enzyme toxicology assay chip, was developed by Clark and colleague Jonathan S. Dordick, the Howard P. Isermann '42 Professor of Chemical and Biological Engineering at Rensselaer. The chip used in the current study was produced by the biotech company Solidus Biosciences, Inc., a startup they founded in Troy, New York, with funding assistance from the National Institutes of Health.

"The MetaChip offers a new approach in the identification of pharmacologically safe and effective lead drug compounds for advancement to the preclinical phase of drug development," said Dordick. "The research results thus far indicate that this technique could be incorporated into an effective process for toxicity analysis at early stages in drug discovery."

The liver is the body's detox station, degrading chemicals and often, in the case of drugs, activating them to become effective elsewhere in the body. Clark and Dordick took several of the liver's major detoxification enzymes, called cytochrome P450 enzymes, and put them on a chip in order to create liver metabolites of drug candidates and rapidly test them for toxicity against specific types of cells.

"Many compounds taken as drugs are not active until they are metabolized by enzymes in the liver," Clark explained. "The MetaChip products correspond to those generated in the liver, but then they can be screened against many different cell types.”

In their new study, Clark and Dordick tested liver metabolites against breast cancer cells as a model system to find metabolites that damage or kill the cells.

The study was published by Clark, Dordick and their colleagues in the Online Early Edition of the Proceedings of the National Academy of Sciences. The paper is printed in the Jan. 25 issue.

Development of the MetaChip is part of a collaborative research project funded by the NIH to find more efficient ways to synthesize and identify compounds that merit further development as possible new drugs. According to Clark, while drug companies have found rapid means of generating new drug candidates, they have yet to come up with a way to rapidly screen these candidates for toxicity.

"There are high-throughput methods of generating new compounds, but few if any high-throughput methods for toxicity analysis, forcing chemists to select compounds for drug development based on limited information about their toxicological properties," he said. "This technology fills that gap. It enables basic human metabolism to be carried out on a chip and the products of that metabolism can be screened for toxicity using the same chip platform."

Current tox screening involves cultured liver cells and even slivers of liver, but these tend to give inconsistent results and contain low levels of the P450 enzymes responsible for the initial clearance of drugs from the body and the activation of prodrugs, the researchers said. P450 enzymes are iron-containing proteins that oxidize chemicals, often making them more water-soluble so that potentially harmful substances can be eliminated more easily from the body. The antihistamine loratidine is one example of a prodrug that must be activated by liver enzymes to be effective, the researchers pointed out in their paper. On the other hand, the common pain reliever acetaminophen is converted by the liver into a toxic chemical that can damage the liver.

The MetaChip contains recombinant P450 enzymes encapsulated in a sol-gel that immobilizes them on a glass slide, so that many drug candidates can be tested simultaneously. The team plans to merge the current MetaChip with a complementary chip on which live cells are growing to enable seamless testing of the drug metabolites against an array of different cell types from the body. This will identify organ-specific drug toxicity and possible adverse drug interactions.

"Our research will expand to include other cell types, compounds, and human enzymes responsible for drug metabolism, including the cytochrome P450s," Clark said. "The outcome of this work may facilitate the elimination of toxic drug candidates much earlier in the drug development process, thereby allowing research efforts to concentrate on more promising and less toxic candidates."




Publication: University of California, Berkeley
On the web: University of California, Berkeley 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News


Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
The research is led jointly by Dordick and Clark, with Moo-Yeal Lee, post-doctoral research associate at Rensselaer, and Chan Beum Park, now assistant professor of chemical and materials engineering at Arizona State University. The work was supported by the NIH.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)