RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
A Global View of DNA-Packing Proteins Cracks the Histone Code

Aug 31, 2005 - 2:12:00 AM
Given the number of possible permutations of modification types and amino acids, the question arose, might different combinations of histone modifications produce discrete outcomes?

 
[RxPG] In one of biology's most impressive engineering feats, specialized proteins package some six-and-a-half feet of human DNA into a nucleus that averages just 5 microns (0.0001969 inches) in diameter. In the first of a series of supercondensing steps, DNA winds around proteins called histones, which together form a complex called the nucleosome. Histones package DNA into repetitive coils, which not only provide genomic structure but also help regulate gene expression. These tasks are mediated in part by chemical modifications to histone proteins—most commonly to histone “tails,” long, unstructured chains of amino acids that protrude from nucleosomes. Different chemical modifications are associated with different functional effects. Acetylation, which adds an acetyl group to an amino acid on the histone tail, has been linked to both gene activation and silencing, depending on which amino acid is modified. Methylation (addition of a methyl group to the histone tail) has also been linked to gene activation and repression, although the chemical effects of methylation differ dramatically from those of acetylation.

Even in yeast, amino acid modifications in the histone tails can number in the tens and twenties. Given the number of possible permutations of modification types and amino acids, the question arose, might different combinations of histone modifications produce discrete outcomes? The notion that a sequence or combination of specific modifications on histone tails acts as a signal to other proteins and produces distinct biological effects was advanced as the “histone code” hypothesis in 2000.

Progress in deciphering the vocabulary, mechanics, and function of the histone code has been hindered by the coarse resolution of available tools. Nucleosomes typically cover about 146 base pairs, but existing technology could only average over 500 to 1,000 base pairs at a time—confounding the effects of single nucleosomes. In a new study, Oliver Rando and colleagues take advantage of the high resolution afforded by their custom-made microarray, which has a resolution of 20 base pairs. Working with the budding yeast Saccharomyces cerevisiae, the scientists examined 12 different histone modifications in individual nucleosomes and found only a small number of distinct combinations with “few discrete histone modification patterns.” The concurrent modifications fall into two categories: one set targets a transcriptional start site but is the same no matter what the level of transcription, while the other occurs throughout gene coding regions and is linked to transcription. Importantly, the only modifications that appear to correlate with transcription occur over transcribed regions, as though they were the consequence, rather than the cause, of transcription.

Why might histone tails exhibit so many modifications if they form only two independent categories? It's possible that histone-modifying enzymes may work best in groups and so the marks that recruit them—acetyl and methyl groups—also come in groups. Another possible explanation relates to how histone modifications signal transcription enzymes that a particular gene requires more or less transcription. When the positively charged amino acid lysine acquires an acetyl group, it loses its charge, and charge–charge interactions play a major role in many interactions between proteins and other molecules. Multiple lysine acetylations on the histone tail may thereby aid certain chemical reactions necessary for transcription in a continuous way; having multiple levels of acetylation, for example, may allow the cell to “tune” protein–protein interactions, and thus gene expression, up and down, rather than simply turn it on or off.

Rando and colleagues propose that the histone modifications associated with transcription may facilitate rather than trigger gene expression, perhaps by clearing a path for the transcription machinery or attracting proteins needed for the job. The authors are careful to point out, however, that histone modifications may also play some role in initiating gene expression, but that any transcription pattern would likely be obscured, or “erased,” as transcription occurs. While future studies will help determine which role proves more common, these results suggest that histone modifications are facilitators rather than activators and that the histone code is more a transcription footprint than a starting signal. —Liza Gross



Publication: (2005) A Global View of DNA-Packing Proteins Cracks the Histone Code. PLoS Biol 3(10): e346
On the web: Full text PDF at PLoS biology site 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News
Synthetic protein to help regenerate new tissues
Nanostructures lend cutting edge to antibiotics
Nanoparticles could offer relief from rashes
Carbon nanotubes can affect lung lining
Chicken egg whites - answer to three-dimensional cell culture systems
Nanoparticles hitchhike on red blood cells for drug delivery
Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles

Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030346

Published: August 30, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)