RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
Aggresome plays a role in thiopurine metabolism

Jul 10, 2005 - 4:01:00 PM
The finding helps explain what goes wrong under certain genetic conditions -- and suggests mechanisms which might help predict which genetic changes could alter the effect of drugs. Prior efforts to explain the mystery of thiopurine metabolism had focused on biochemical mechanisms -- not changes in protein levels.

 
[RxPG] Mayo Clinic researchers have discovered an inherited structural mechanism that can make drugs for some diseases toxic for some patients. The mechanism decreases a protein and in turn causes certain individuals to metabolize thiopurine drugs differently. Thiopurine therapies are used to treat patients with childhood leukemia, autoimmune diseases and organ transplants. The Mayo researchers say their finding advances the field of pharmacogenomics, which tailors medicine to a patient's personal genetic makeup.

In the current issue of the Proceedings of the National Academy of Sciences, (http://www.pnas.org/cgi/content/abstract/102/26/9394) Mayo researchers report that under certain genetic conditions, key proteins are not formed properly -- they are "misfolded." When misfolding happens, the quality-control process in the cell detects the misfolded proteins and tags them for immediate destruction or quarantines them in a "cellular trash can" known as an aggresome (last syllable rhymes with "foam"). Whether destroyed or aggregated into the aggresome, the effect is the same: the patient's body suffers a protein deficit that disrupts the enzyme that metabolizes thiopurine.

"Our finding is surprising because the aggresome is a new kind of mechanism to study to explain this. It's quite different from what we were thinking even a few years ago," says Liewei Wang, M.D., Ph.D., lead Mayo researcher in the study. "People are still debating what its function really is, but it appears to play a role here by receiving misfolded proteins."

Significance of the Research

"Nobody has shown before that the aggresome plays a role in thiopurine metabolism, and it's a significant contribution," says Richard Weinshilboum, M.D., the Mayo Clinic researcher who first described the genetically variable response to thiopurine drugs over 20 years ago. "From a clinical point of view, the genetic test we developed at Mayo to predict response to thiopurine drugs has been invaluable to pharmacogenomic medicine -- and now this finding is taking us in promising new directions because we believe our findings can be generalized to apply to many instances in the field."

The finding helps explain what goes wrong under certain genetic conditions -- and suggests mechanisms which might help predict which genetic changes could alter the effect of drugs. Prior efforts to explain the mystery of thiopurine metabolism had focused on biochemical mechanisms -- not changes in protein levels.

Background

Researchers have known for decades that 1 in 300 patients of Caucasian European genetic background has two copies of the variant gene -- specifically, a switch in 2 out of 245 amino acids -- that results in the absence of the protein needed to properly metabolize thiopurine drugs. In patients with the genetic defect, instead of helping heal, a standard dose of thiopurine drugs can cause fatal bone marrow destruction. Though Mayo Clinic researchers described this genetically variable response and the danger it presents over 20 years ago, no one had been able to explain the cellular mechanism behind it.




Publication: Proceedings of the National Academy of Sciences
On the web: http://www.pnas.org/cgi/content/abstract/102/26/9394 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News
Synthetic protein to help regenerate new tissues
Nanostructures lend cutting edge to antibiotics
Nanoparticles could offer relief from rashes
Carbon nanotubes can affect lung lining
Chicken egg whites - answer to three-dimensional cell culture systems
Nanoparticles hitchhike on red blood cells for drug delivery
Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles

Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
In addition to Drs. Wang and Weinshilboum, the research team includes Tien Nguyen, Ph.D.; Richard Mclaughlin; Laura Sikkink; and Marina Ramirez-Alvarado, Ph.D. Their work is supported by grants from the National Institutes of Health (NIH), the NIH Pharmacogenetics Research Network, Mayo Foundation and the Mayo Foundation Hematology Malignancies Program.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)