RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
Electro osmotic Mixing in Microchannels

Dec 23, 2004 - 10:54:00 PM

 
[RxPG] By alternating the flow of fluid through tiny plastic pipes, a team of mechanical engineers at New Jersey Institute of Technology (NJIT) has discovered a new and speedier way to mix liquids, which in turn will someday produce better and safer medications.

"Everybody looks at creating turbulence in three dimensions to mix liquids," said team leader Nadine Aubry, PhD, Jacobus distinguished professor and chair of the mechanical engineering department at NJIT. "We traded space for time, which is a much simpler way to handle this problem when space is at a premium."

A paper by Aubry and her team, "Electro osmotic Mixing in Microchannels," published in the Nov. 29, 2004 issue of Lab on a Chip, showed that mixing could be accomplished by changing the flow rates by simply varying the voltage applied to the electrodes that commonly pump the fluid through a micro-channel. This publication follows other journal articles about similar research using other types of pumping: the Aug. 15, 2004 issue of Analytical Chemistry as well as the May 19, 2003 issue of Lab on a Chip.

More recognition for Aubry's work has come from professional colleagues, who appointed her last month vice chair of the U.S. National Committee for Theoretical and Applied Mechanics. The Committee serves as a national forum for discussions on research, technology and education of mechanics, as well as represents the U.S. in international scientific activities related to mechanics.

"Normally when two pipes in a micro-scale chemical reactor meet, the two liquids fail to mix," said Aubry. But by switching the flow many times per second, the scientists were able to create - in just a second - a pseudo-turbulent flow that completely blended the two liquids. To demonstrate the method, Aubry used a "T" channel intersection whose segments were 200 microns wide by 120 microns deep – about twice the circumference of a human hair.

The method caused the interface between the two liquids to stretch, fold, and sweep through, allowing the liquids to mix quickly after traveling only two millimeters down the channel. Aubry expects the new methods to have many useful applications, especially in the pharmaceutical industry.

"The process will be useful in the preliminary phases of drug discovery," she said, "where reagents need to be well-mixed to produce purer test drugs with fewer unwanted by-products." Her process will also help engineers design smaller, more sensitive detectors for nerve gases and pollutants. And on the domestic front, inexpensive lab-on-a-chip devices could be used to make sensors that will detect rotting food in kitchen refrigerators.

Aubry is the co-director of NJIT's Keck Laboratory, a biotechnology lab whose world-class technology can help identify and manipulate bacteria, viruses and cancer cells. She received her bachelor's degree in mechanical engineering from the National Polytechnic Institute in Grenoble, France, her master's degree in mechanical engineering from the Scientific University of Grenoble and her doctorate in mechanical and aerospace engineering from Cornell University, N.Y.

She has served as a member of the National Aeronautics and Space Engineering Board's Air Force Office of Scientific Research (AFOSR) Panel and as a member of the National Research Council Panel for the NASA Administrator's Fellowship Program. She is a recipient of the Presidential Young Investigator Award from the National Science Foundation and the Ralph R. Teetor Award from the Society of Automotive Engineers.

Aubry is looking forward to continuing her micro-fluidic investigations. "Fluid mechanics has always been at the forefront of engineering and science," she said. "The prominent role that it now plays in emerging areas such as nanotechnology and biomedicine makes it a particularly exciting field."



Publication: Nov. 29, 2004 issue of Lab on a Chip
On the web: New Jersey Institute of Technology  

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News


Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
New Jersey Institute of Technology, the state's public technological research university, enrolls more than 8,200 students in bachelor's, master's and doctoral degrees in 100 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and eLearning.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)