RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
New role for CIB1 protein as fundamental inhibitor of cell movement

Aug 7, 2005 - 2:35:00 PM
"CIB1 plays a prominent role in the activation of PAK1 and potentially may be another important player in the regulation of this kinase,"

 
[RxPG] Scientists from the University of North Carolina at Chapel Hill School of Medicine and the UNC Lineberger Comprehensive Cancer Center have identified a protein that may inhibit cellular movement, or migration.
The protein, CIB1, or calcium and integrin-binding protein 1, was originally discovered at UNC in 1997 as a blood platelet protein that may play a role in clotting.

Cell migration belongs to the most rudimentary of cellular functions that allow processes such as fetal development, new blood vessel formation and wound healing to occur in humans. Increased tumor cell migration also is one of the hallmarks of highly aggressive, rapidly spreading cancer tumors.

The study appears in the August issue of The Journal of Cell Biology.

The study indicates that CIB1 inhibits cell migration by binding to and activating a protein called PAK1, or p21-activated kinase, in cancer cells. When CIB1 activates PAK1, this kinase then inhibits cell migration by adding a phosphate group to a host of other proteins in the cell.

Thus, the study suggests that CIB1 may be a likely target for new drug development aimed at decreasing tumor metastasis, or spread, throughout the body.

"I was ecstatic to see these results and to discover that it also regulates the fundamental process of cell migration," said Dr. Tina Leisner, associate professor of pharmacology at UNC and the study's lead author. "CIB1 plays a prominent role in the activation of PAK1 and potentially may be another important player in the regulation of this kinase," she added.

The other activators of PAK1 include relatives of the notorious Ras family of tumor promoters, the GTPases Rac and Cdc42. CIB1 activation of PAK1, however, is different from these GTPases.

"CIB1 activates PAK1 before Rac and Cdc42," said Dr. Leslie V. Parise, UNC professor of pharmacology, member of UNC Lineberger and the study's senior author.

"The time course of PAK1 activation never synched up with the time course of Rac and Cdc42 activation; now we know why – it was probably CIB1 that was activating PAK1 and not the Ras relatives."

In illustrating the role that CIB1 plays in cell migration and PAK1 activation, the authors used a new method known as RNAi or RNA interference to knock down or reduce CIB1 expression in various cell lines. Cells with less CIB1 had less PAK1 activation and migrated faster. The authors also showed that the more CIB1 these cells had, the less likely they were to move.

The key to understanding CIB1's multifunctional role in humans is that the protein has a relative that behaves in a very similar multifunctional fashion: calmodulin. This was one of the first regulatory proteins ever discovered.

"CIB1 is very similar to the protein calmodulin, which binds to a host of other proteins and regulates numerous cell functions, the fact that CIB1 and calmodulin are so similar could suggest that CIB1 may play multiple roles in multiple cell types."

"Our study of CIB1 is still very much in its early days, but its role in migration is already very clear," Parise said.



Publication: The study appears in the August issue of The Journal of Cell Biology.
On the web: http://www.med.unc.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News


Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
Co-authors with Leisner and Parise include former UNC postdoctoral researcher in Parisi's lab, Dr. Mingjuan Liu, currently in Harvard University's department of pathology; Dr. Jonathan Chernoff, senior member of the basic sciences division of the tumor cell biology program at Fox Chase Cancer Center in Philadelphia; and postdoctoral research fellow Dr. Zahara M. Jaffer, also from Fox Chase.

This work was supported by grants from the National Institutes of Health.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)