RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
Selenium Speeds Enzymatic Reactions

Nov 8, 2005 - 5:44:00 PM
The authors suggest the explanation for these findings relates to a difference in the catalytic mechanism of selenocysteine- and cysteine-containing enzymes. The substrate for both enzyme types, methionine-R-sulfoxide, is found within oxidized proteins. The job of both enzymes is to reduce this compound back to the amino acid methionine. Both do so by accepting an oxygen atom from the sulfoxide.

 
[RxPG] At the heart of every reaction of every cell lies an enzyme, a protein catalyst. At its active site—a special pocket on its surface—it binds reactants (substrates) and rearranges their chemical bonds, before releasing them as useful products. Rearranging some bonds may require help from certain chemical elements that are present in trace amounts. Many enzymes place these elements at the center of their active sites to do the most critical job.

Selenium is one such element. In large quantities, selenium is toxic, but, in trace amounts, it is absolutely essential for life in many organisms, including humans. Selenium is present in proteins in the form of selenocysteine, a rare amino acid that helps promote antioxidant reactions. These selenocysteine-containing proteins are called selenoproteins. One important selenoprotein is the enzyme methionine-R-sulfoxide reductase (MsrB) 1, whose job is to repair proteins injured by oxidative damage, caused by sunlight, toxic chemicals, or a variety of other insults.

In mammals, there are two other forms of MsrB, which also can efficiently perform this task, but use the abundant amino acid cysteine instead of selenocysteine. So why do cells go to the trouble and metabolic expense of acquiring selenium from the environment? In this issue, Hwa-Young Kim and Vadim Gladyshev explore the details of active-site chemistry of these three related enzymes, and show that the selenoprotein form employs a different catalytic mechanism.

The authors began by identifying three key amino acids in the active site of the cysteine-containing forms, which did not occur in the selenoprotein MsrB1. When any of these amino acids were mutated, the activity of the cysteine-containing enzymes was greatly diminished. This result indicates that these amino acids likely play a role at the active site, a supposition supported by previous work on related enzymes in bacteria.

Kim and Gladyshev next systematically mutated MsrB1 to include one, two, or all three of these amino acids, and discovered that inclusion of one or any combination of them diminished activity of the selenocysteine-containing enzyme. This suggested that while these amino acids support the mechanism of the cysteine-containing forms, they interfere with the mechanism of the selenoprotein. Not surprisingly, when the selenium was removed from MsrB1, the enzyme was significantly impaired. But when the three amino acids were added to this crippled enzyme, they restored some of the diminished activity, probably by carrying out the same mechanism they do in the cysteine-containing enzymes.

The authors then inserted a selenium atom into each of the cysteine-containing enzymes, in the same spot in the active site where it sits in MsrB1. They found that the initial activity of each enzyme was increased over 100-fold, indicating the inherent capacity of selenium to promote catalytic activity. These souped-up enzymes were unable to complete the reaction, however, because they lacked other features of MsrB1's active site. Further scrutiny of the enzymes revealed these critical features, and inserting them allowed the artificial selenoproteins to carry out the entire reaction.

The authors suggest the explanation for these findings relates to a difference in the catalytic mechanism of selenocysteine- and cysteine-containing enzymes. The substrate for both enzyme types, methionine-R-sulfoxide, is found within oxidized proteins. The job of both enzymes is to reduce this compound back to the amino acid methionine. Both do so by accepting an oxygen atom from the sulfoxide.

In the presence of selenium, the oxygen temporarily binds to the selenium. The selenium's electrons then shift to bond with a sulfur on a neighboring cysteine amino acid, kicking out the oxygen as part of a water molecule. Finally, the selenium-sulfur bond is broken and the enzyme is restored to its original state by the intervention of thioredoxin, a ubiquitous cell molecule whose job is to undo just such temporary linkages in a wide variety of enzymes.

Without selenium, the oxygen binds directly to sulfur, and thioredoxin intervenes to form the water and restore the sulfur. This reaction occurs in fewer steps, but is slower. The authors propose that the evolution of selenium-containing MsrB1 from cysteine-containing forms was likely favored by the higher rate of reaction it offered, although this trend is likely limited by the requirement for changes in other portions of the enzyme to accommodate the trace element. The authors suggest that selenium provides inherent catalytic advantages to certain types of enzymatic reactions, even though utilization of these advantages is sometimes tricky. If so, manipulation of related enzymes by insertion of selenium may increase their catalytic efficiency, perhaps much above that designed by nature. This may offer advantages for some biotechnology and biomedical applications that depend on antioxidants. —Richard Robinson



Publication: (2005) Selenium Speeds Reactions. PLoS Biol 3(12): e419
On the web: Read Research Article (Open Access) at PLoS Journal Website 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News
Synthetic protein to help regenerate new tissues
Nanostructures lend cutting edge to antibiotics
Nanoparticles could offer relief from rashes
Carbon nanotubes can affect lung lining
Chicken egg whites - answer to three-dimensional cell culture systems
Nanoparticles hitchhike on red blood cells for drug delivery
Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles

Subscribe to Biotechnology Newsletter

Enter your email address:


 Additional information about the news article
PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.

DOI: 10.1371/journal.pbio.0030419

Published: November 8, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)