RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Biotechnology Channel

subscribe to Biotechnology newsletter
Latest Research : Biotechnology

   EMAIL   |   PRINT
Structure of membrane protein NhaA revealed

Aug 6, 2005 - 11:47:00 AM
"Unlike the majority of those proteins which are soluble in water, the membrane proteins are soluble only in fats or in the presence of detergents."

 
[RxPG] The structure of the membrane protein NhaA has been revealed by researchers at the Hebrew University of Jerusalem and the Max Planck Institute of Germany.

Membrane protein research is at the forefront of modern biological study, with great potential consequences for development of new medicinal treatments and genetic engineering of plants.

The research on NhaA has been carried out by Etana Padan, the Adelina and Massimo DellaPergola Professor of Life Sciences, with Dr. Rimon Avraham, both of the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Hartmut Michel, Nobel prize winner for chemistry in 1988, of the Max Planck for biophysics in Frankfurt, Germany. Their work, described in a recent edition of the journal Nature, was supported by a grant from the German-Israel Binational Science Foundation;

Proteins such as NhaA are found in the membranes of every living cell, from bacteria and up to humans. Until now, the structure of fewer than 50 cell membrane proteins have been discovered, as opposed to 30,000 soluble proteins.

"The location of the proteins in the cell membranes presents tremendous difficulties in research," said Prof. Padan. "Unlike the majority of those proteins which are soluble in water, the membrane proteins are soluble only in fats or in the presence of detergents."

The cell membrane is the crossroads of busy, two-way "traffic" through which materials and impulses travel into and out of the cell. The fatty cell membrane is impenetrable to most of these materials and signals; and it is therefore the proteins within the membranes that are responsible for the communication between the cell and its environment. Indeed, more than 60 percent of the medicines in use today are directed at the cell membrane proteins. Since the cell membrane proteins are exposed, in part, to areas extending outside the cells, the medicines are able to reach them without entering the cell itself.

In Prof. Padan's laboratory, the researchers succeeded in isolating the gene that encodes NhaA in bacteria and in producing a large quantity of the protein in its active state. This achievement paved the way for determining the structure of the protein, providing an essential insight into its mechanism of activity and regulation. NhaA protects the volume of the cell and its internal, normative state in terms of its salinity and acidity.

The deciphering of the NhaA protein's structure was done utilizing three-dimensional crystals of the protein which diffract x-rays. The work of analyzing the diffraction was done using the powerful electron accelerators in Grenoble, France, and Zurich, Switzerland.

"In this way we were able to reveal the wonderful architecture of the membrane protein, which was unknown before," said Prof. Padan. "In the center of the protein we found a wide funnel which extends into the cell. The funnel narrows and ends at the point at which it binds with the sodium or the hydrogen deep within the cell membrane. Near that point two chains of the protein unite into a unique structure."

The researchers believe that this unique structure is the basis for the activity of the protein. The protein operates as a kind of pump, utilizing energy which it receives from processes taking place within the cell. The protein structure thus acts as a kind of molecular motor. This "motor" is connected to the area found at the mouth of the funnel that apparently conveys signals to "modulate" the motor according to the acidity within the cell. The result is that the protein's activity is controlled in accordance with the needs of the cell in relation to its acidic and basic levels.



Publication: Nature Journal
On the web: The Hebrew University of Jerusalem 

Advertise in this space for $10 per month. Contact us today.


Related Biotechnology News
Synthetic protein to help regenerate new tissues
Nanostructures lend cutting edge to antibiotics
Nanoparticles could offer relief from rashes
Carbon nanotubes can affect lung lining
Chicken egg whites - answer to three-dimensional cell culture systems
Nanoparticles hitchhike on red blood cells for drug delivery
Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles

Subscribe to Biotechnology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)