RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
  CAD
  CHF
  Clinical Trials
  Hypertension
  Myocardial Infarction
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cardiology Channel

subscribe to Cardiology newsletter
Latest Research : Cardiology

   EMAIL   |   PRINT
Human embryonic stem cells could lead to a biological form of pacemaker

Dec 28, 2004 - 5:15:00 AM

 
[RxPG] Animal studies have shown that genetically engineered heart cells from human embryonic stem cells could lead to a biological form of pacemaker, according to a new study. Researchers injected clusters of human beating heart cells (derived from human embryonic stem cells) into the heart muscle of six guinea pigs. The stem cells were first genetically engineered and then encouraged to become heart cells.

Results show after the guinea pigs' own pace-making cells were destroyed (through freezing), electrical measurements revealed a new heartbeat (slower) created by the addition of the human cells. The new electrical signal was traced to the human cells, made easier to locate by their fluorescent glow.

The implanted cells also responded appropriately to drugs used to slow or speed the heart rate, which pacemakers can't do however researchers say many challenges remain before this technique could be used for patients



On the web:  

Advertise in this space for $10 per month. Contact us today.


Related Cardiology News
New NIH-funded resource focuses on use of genomic variants in medical care
World Heart Day 2013
The higher the better?
Common blood pressure drug reduces aortic enlargement in Marfan syndrome
Cardiovascular risk factors highest in winter and lowest in summer
Quitting smoking drops heart attack risk to levels of never smokers
Study finds mechanical chest compressions are equally as effective as manual CPR
Impact of AF on stroke risk eliminated with multiple risk factors
Mass screening identifies untreated AF in 5% of 75-76 year olds
Diabetic stroke risk after AMI drops in 10 year period

Subscribe to Cardiology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)