RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
  CAD
  CHF
  Clinical Trials
  Hypertension
  Myocardial Infarction
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cardiology Channel

subscribe to Cardiology newsletter
Latest Research : Cardiology

   EMAIL   |   PRINT
Magnetically guided catheter zaps atrial fibrillation

Apr 1, 2006 - 2:41:00 PM , Reviewed by: Priya Saxena
"Based on our results, we believe that incorporation of remote navigation and ablation in the electrophysiology laboratory may represent a true revolution regardless of age and experience of the operators leading to a seismic change in electrophysiologic paradigms for many laboratories worldwide."

 
[RxPG] A remotely-controlled catheter device guided by magnetic fields provides a safe and practical method for delivering radio frequency ablation treatment in the hearts of patients with atrial fibrillation, according to a new study in the April 4, 2006, issue of the Journal of the American College of Cardiology.

"Based on our experience with remote navigation and ablation technology, a new era in interventional electrophysiology is beginning as magnetic, very soft catheters can be navigated in the heart more precisely and safely than manual catheters without risk of major complications, even in less experienced centers," said Carlo Pappone, M.D., Ph.D. from the Department of Electrophysiology, San Raffaele University Hospital in Milan, Italy.

Atrial fibrillation is an abnormal heart rhythm in which the upper chambers of the heart flutter, and do not pump blood normally. If the condition cannot be managed with medications, some patients are treated with radio frequency ablation. The technique uses a high energy pulse to destroy a small area of heart muscle cells, in order to prevent them from conducting nerve signals that trigger fibrillation.

Typically the radio frequency pulse is emitted by from the tip of a catheter threaded through blood vessels into the heart until it is positioned next to the target area. Conventional catheters are somewhat stiff, so they can be pushed and pulled through blood vessels, and their tips can be curled and pointed by an operator standing by the patient. The device tested in this trial uses a very soft, limp tip that has a magnet on the end. Rather than manually pointing the catheter tip, the operator of this device uses a computer to control a magnetic field that robotically moves the catheter tip. The principle is the same as a compass needle pointing to magnetic north; allowing this device to steer the magnetic catheter in three dimensions to a target visualized on 3-D scans of the patient's heart.

"Catheter ablation for atrial fibrillation is now an important treatment for this common disorder, but the current strategy of manual catheter manipulation is highly operator-dependent, with a long and variable learning curve and a great potential for both inefficacy and complications in inexperienced hands. Robotic navigation may increase the ability of inexperienced operators to perform this procedure easily and safely, as it is most dependent on a well-trained team rather than on a single operator," Dr. Pappone said.

Since catheter procedures of this type require frequent use of X-rays to track the location of the target and the catheter tip, another advantage of remote navigation is that the operator can work from a shielded control room, rather than having to stand next to the patient for several hours while wearing protective lead aprons.

This first trial of the robotic magnetic navigation system in patients with atrial fibrillation involved 40 participants whose conditions were not adequately controlled by medication. After encountering some difficulties in the first three patients, the researchers said the remaining procedures went smoothly. In all, the catheter tip was successfully guided by magnetic navigation to the target and radio frequency ablation was applied in 38 of the 40 study participants. There were no reported complications during the procedures.

"Based on our results, we believe that incorporation of remote navigation and ablation in the electrophysiology laboratory may represent a true revolution regardless of age and experience of the operators leading to a seismic change in electrophysiologic paradigms for many laboratories worldwide. People always have had a love/hate relationship with robots, but this psychological barrier must be overcome. After performing more than 10,000 procedures with manually deflectable catheters, I have become enthusiastic for this emerging field," Dr. Pappone said.

E. Kevin Heist, M.D., Ph.D. from Massachusetts General Hospital in Boston, who was not connected with this study, said even though catheter ablation is more successful than medical treatment for atrial fibrillation, the conventional procedure can be long and difficult.

"Catheter ablation as currently practiced with hand held, manually deflected catheters is a long procedure, typically 3 to 5 hours, has a long learning curve, and has a significant risk of procedural complications and of recurrent atrial fibrillation after the procedure. Robotic catheter navigation with a magnet-tipped catheter directed by large, computer directed magnets can provide more precise catheter control as compared to manual catheter manipulation. This has the potential, as yet unproven, to shorten the procedure, reduce the length of the learning curve, and perhaps to improve the outcomes of the procedure and reduce complications," Dr. Heist said.

Dr. Heist said future trials will be needed to directly compare robotic navigation to conventional manually operated catheters in regard to procedural safety and efficacy.

Mitchell N. Faddis M.D., Ph.D. from the Washington University School of Medicine in St. Louis, Missouri, who was not involved with this study, helped develop the remote magnetic navigation system the researchers used.

"The work of Pappone et al. is extremely exciting to me as the culmination of this work, and to the cardiology community in general as a potential important technical advance in the treatment of atrial fibrillation," Dr. Faddis said.

Dr. Faddis said this new system should be easier to master, as well as being more precise, than conventional catheter ablation.

"Because of computer control, the efficiency of the procedure may improve. By the end of the 40 patient cohort of Pappone et al., procedures were routinely performed in less than an hour. This will likely have an important impact on the complication rate for the procedure which is likely affected by procedure duration," he said.



Publication: April 4, 2006, issue of the Journal of the American College of Cardiology.
On the web: www.acc.org 

Advertise in this space for $10 per month. Contact us today.


Related Cardiology News
New NIH-funded resource focuses on use of genomic variants in medical care
World Heart Day 2013
The higher the better?
Common blood pressure drug reduces aortic enlargement in Marfan syndrome
Cardiovascular risk factors highest in winter and lowest in summer
Quitting smoking drops heart attack risk to levels of never smokers
Study finds mechanical chest compressions are equally as effective as manual CPR
Impact of AF on stroke risk eliminated with multiple risk factors
Mass screening identifies untreated AF in 5% of 75-76 year olds
Diabetic stroke risk after AMI drops in 10 year period

Subscribe to Cardiology Newsletter

Enter your email address:


 Additional information about the news article
This study was supported by a grant from Johnson & Johnson. This work was supported with technical support from Stereotaxis Inc. Dr. Heist did not report any disclosures relevant to this article. Dr. Faddis is a consultant with Stereotaxis and receives research funding from the company.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)