RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
  CAD
  CHF
  Clinical Trials
  Hypertension
  Myocardial Infarction
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cardiology Channel

subscribe to Cardiology newsletter
Latest Research : Cardiology

   EMAIL   |   PRINT
New light on cholesterol's role in causing cardiovascular events

Aug 29, 2005 - 9:46:00 PM
“As the crystals form, they dig their way through the wall of the artery, and that may be a trigger for the inflammation”

 
[RxPG] Research by a Michigan State University cardiologist published in the September edition of Clinical Cardiology has shed new light on the role that cholesterol plays in causing heart attacks, strokes and other cardiovascular events in humans.

The work of George Abela, a professor in MSU’s Department of Medicine and chief of the department’s cardiology section, finds that cholesterol that has built up along the wall of an artery and crystallized from a liquid to a solid state can expand and then burst, sending material into the bloodstream.

It is this chain of events – the expansion of the liquid cholesterol as it crystallizes into a solid – that kick-starts the body’s natural clotting process which, unfortunately in this case, works against the body, essentially shutting down the artery.

“As the cholesterol crystallizes, two things can happen,” Abela said. “If it’s a big pool of cholesterol, it will expand and just tear the cap off the deposit in the arterial wall. Or the crystals, which are sharp, needle-like structures, poke their way through the membrane covering the cholesterol deposit, like nails through wood.”

It is the presence of the cholesterol crystals and other debris material released by the plaque rupture into the bloodstream that activates the clotting mechanism.

“What the clotting system is doing is reacting to an injury in the artery,” he said. “Once a rupture or erosion of the surface of the artery occurs, then the clotting system is activated to do its job.”

Abela compared the crystallization of the cholesterol to putting a plastic bottle of water into a freezer. Over time the water freezes and expands, pushing its way out of the bottle or breaking the bottle altogether.

What this work also means is that physicians and other health care providers now have another weapon in their arsenal against cardiovascular disease.

“So far, treatments have not been focused on this process,” Abela said. “Now we have a target to attack with the various approaches we have. In the past, we’ve treated the various stages that lead to this final stage, rather than preventing or treating this final stage of the condition.”

Abela stressed that it remains imperative that people use diet and exercise to keep cholesterol levels low.

“This really drives the point home how important cholesterol control can be,” he said.

Until now, scientists had thought that inflammation of the wall had caused the breakdown of the cap that kept the cholesterol in the arterial plaque from rupturing. Abela said his findings don’t necessarily discount the inflammation theory, but rather add another dimension to it.

“As the crystals form, they dig their way through the wall of the artery, and that may be a trigger for the inflammation,” he said. “Inflammation is a normal mechanism, one that kicks in to repair the damage. That is why it is common to see inflammation at the site of these events.”

The research was conducted in Abela’s lab, research that he said was “as simple as science can get.”

Essentially, Abela and colleagues took varying amounts of cholesterol, reduced it to a liquid form, and then watched it expand as it solidified. In doing so, it tore through thin biological membranes.

“After the cholesterol crystallized, its volume was about 45 percent larger than what we started with,” he said. “And the entire process took all of about three minutes.”



Publication: September edition of Clinical Cardiology
On the web: Michigan State University 

Advertise in this space for $10 per month. Contact us today.


Related Cardiology News
New NIH-funded resource focuses on use of genomic variants in medical care
World Heart Day 2013
The higher the better?
Common blood pressure drug reduces aortic enlargement in Marfan syndrome
Cardiovascular risk factors highest in winter and lowest in summer
Quitting smoking drops heart attack risk to levels of never smokers
Study finds mechanical chest compressions are equally as effective as manual CPR
Impact of AF on stroke risk eliminated with multiple risk factors
Mass screening identifies untreated AF in 5% of 75-76 year olds
Diabetic stroke risk after AMI drops in 10 year period

Subscribe to Cardiology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)