RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
  Hearing Imapirment
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
ENT Channel

subscribe to ENT newsletter
Latest Research : ENT

   EMAIL   |   PRINT
How sensory hair cells in the ear develop unique shapes that enable sound perception

Aug 19, 2005 - 10:37:00 PM
"This basic molecular pathway is involved in regulating many other aspects of embryonic development in addition to the formation of the polarized structure of the auditory sensory organ," says Dr. Chen.

 
[RxPG] Scientists are one step closer to understanding the genetic pathway involved in the development of hearing. New research findings, published online this week in the journal Nature Genetics, detail how sensory hair cells in the ear –– the cells largely responsible for hearing –– develop unique shapes that enable the perception of sound.

Located in the spiraled cochlea, the hearing portion of the inner ear, the hair cells transform the mechanical vibrations that enter the ear in the form of sound waves into chemical signals, which they then direct to the brain. Ping Chen, PhD, assistant professor of cell biology at Emory University School of Medicine, and her colleagues found that the development of cochlea and hair cells is dependent on a genetic pathway called the PCP (planar cell polarity) pathway.

Although some species, including birds, are capable of re-growing hair cells, mammals lack the ability to naturally regenerate hair cells. Thus individuals born with improperly developed hair cells, or those who lose them through trauma, disease, environmental factors or aging, cannot regain their hearing. Reports from the National Institutes of Health (NIH) indicate that severe hearing impairment affects 28 million Americans. That number includes the approximately 4,000 Americans each year who suffer from sudden deafness, and the roughly 12,000 children born each year with difficulty hearing.

Scientists have been optimistic that by discovering the genes involved in development of the ear they could learn the molecular and genetic basis for some forms of deafness and offer promises for future efforts in hearing restoration. For the past two decades they have understood that the unique asymmetrical shape of hair cells was an essential part of their proper function. However, it was not clear which genes were involved in the development of this polarized shape within the cochlea. By using mouse models, Dr. Chen and her research team discovered that the PCP pathway is involved in shaping the cochlea and the sensory hair cells. Mutations within this genetic pathway impact the shape of the cochlea and the polarity of the sensory hair cells that are essential for hearing.

"This basic molecular pathway is involved in regulating many other aspects of embryonic development in addition to the formation of the polarized structure of the auditory sensory organ," says Dr. Chen. "Finding out which processes are involved in the formation of these polarized cells is an essential, fundamental issue for both developmental and cell biologists."



Publication: Nature Genetics
On the web: Emory University Health Sciences Center 

Advertise in this space for $10 per month. Contact us today.


Related ENT News
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
$12 million for a center for research on aphasia
Mount Sinai awarded more than $5 million from NIH to study neurological voice disorder
Teaching the brain to speak again
Study to test whether hearing aids can help prevent falls
Speech-language researcher awarded top honors
A comparison of 2 home exercises to treat vertigo
Study compares traits of autism, schizophrenia
2-year-old children understand complex grammar
New polymer gel may restore vocal cords

Subscribe to ENT Newsletter

Enter your email address:


 Additional information about the news article
Other authors of the study included Jianbo Wang and Anthony Wynshaw-Boris from the University of California San Diego School of Medicine, Sharayne Mark, Xiaohui Zhang, Dong Qian, Seung-Jong Yoo, Kristen Radde-Gallwitz, Yanping Zhang, Xi Lin from Emory University School of Medicine, and Andres Collazo from House Ear Institute.

The research was funded by the NIH and the Woodruff Foundation.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)