RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetics Channel

subscribe to Genetics newsletter
Latest Research : Genetics

   EMAIL   |   PRINT
Exon Silencing Regulated by a Trio of Short RNA Motifs

Apr 19, 2005 - 5:12:00 PM
The authors noted an atypical but highly conserved GGGG motif in the intron just downstream from the splice site that ends the CI exon. When they introduced point mutations in this motif, the exon was included up to four times as often. The rate of exclusion, or silencing, could be dramatically increased by the addition of another GGGG tetrad farther inside the intron.

 
[RxPG] Our cells make many more kinds of proteins than can be accounted for by the relatively modest number of genes in our genome. The key to this protein-coding bounty is alternative splicing, in which one or more transcribed exons—nucleotide sequences that code for a specific segment of the protein—are excluded from the final messenger RNA before it is translated into protein. While the majority of human genes are alternatively spliced, little is known about specific RNA sequences that dictate exclusion of these exons. In a new study, Paula Grabowski and colleagues show that three short sequences, two within the excluded exon and one in an adjacent intron, or non-coding nucleotide sequence, trigger exclusion in at least one gene, and probably a large handful of others as well.

Grabowski and colleagues studied this process in a class of proteins essential for brain function called glutamate receptors. As the name implies the glutamate receptors bind to glutamate, the principal excitatory neurotransmitter in the brain. NMDA glutamate receptors, which play a role in memory formation and neuronal development, are composed of multiple subunits. Within the NR1 subunit, exclusion or inclusion of the CI cassette exon has dramatic functional consequences. The CI exon appears in the forebrain but is virtually absent in the hindbrain. How this differential splicing is regulated is poorly understood.

The authors noted an atypical but highly conserved GGGG motif in the intron just downstream from the splice site that ends the CI exon. When they introduced point mutations in this motif, the exon was included up to four times as often. The rate of exclusion, or silencing, could be dramatically increased by the addition of another GGGG tetrad farther inside the intron.

Systematic mutation within the exon identified a pair of UAGG motifs that also promoted exon silencing, an effect that could be enhanced even further by introducing a third, artificial, UAGG. The pair of UAGG tetrads appears to work in combination with the GGGG tetrad, since without the former sequences, the latter had little power to silence CI expression. Silencing is mediated by binding of UAGG to the ribonucleoprotein hnRNP A1, which also apparently interacts with the GGGG within the intron.

The authors next did a series of genomic database searches, to identify these motifs in other genes. They reasoned that if the triad was a common means of exon silencing, it should be overrepresented among genes known to undergo alternative splicing. In more than 90,000 exons in human and mouse genomes, they found 16 with the motif pattern, of which three (19%) were known skipped exons. In contrast, among those without the pattern, the proportion of skipped exons was only 5%. They also found that the GGGG motif by itself was overrepresented among skipped exons, indicating it probably plays a significant role in exon exclusion even without its UAGG partners.

These results alone cannot explain why one cell type includes an exon while another excludes it, since the primary transcript in different cell types is the same. Instead, these differences are likely explained by tissue-specific differences in levels of splicing factors or binding proteins. With such small absolute gene numbers, it is clear that the specific trio identified by Grabowski and colleagues is only one of many likely to regulate exon inclusion. In the search for others, this study indicates the value of bioinformatics strategies that employ not only specific sequences, but also spatial configurations.



Publication: (2005) Exon Silencing Regulated by a Trio of Short RNA Motifs. PLoS Biol 3(5): e173
On the web: Print PDF (34K) 

Advertise in this space for $10 per month. Contact us today.


Related Genetics News
Genetic study of bedbugs may help identify pesticide resistance genes
Novel method of database analysis to help identify responsible genes and diagnostic markers
Environmental influences can be passed down to the next generation
Gene found to be key in etiology of cleft palate
History, geography also seem to shape our genome
Induced pluripotent stem cell lines from pigs
Egg cells help extend life of sperms
Family of genes known as KRAB-ZFP regulate genes dealing with stress
New screening strategy increases Down's syndrome detection before birth
Can genetic research spur racist attitudes?

Subscribe to Genetics Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030173

Published: April 19, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)