RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetics Channel

subscribe to Genetics newsletter
Latest Research : Genetics

   EMAIL   |   PRINT
New Light on the Role of Sex Chromosomes

Mar 17, 2005 - 7:16:00 PM
"We now know that up to 25 percent of the X chromosome can be uniquely expressed in one sex relative to the other. Such differences should be recognized as a potential factor to explain sex-specific traits, both in complex disease as well as normal gender differences."

 
[RxPG] The National Institutes of Health (NIH) hailed the first comprehensive analysis of the sequence of the human X chromosome, saying that this provides sweeping new insights into the evolution of sex chromosomes and the biological differences between males and females.

"These detailed analyses of the X chromosome represent a monumental achievement for biology and medicine. They are exciting examples of what is being learned from the vast trove of sequence data produced by the Human Genome Project and made freely available to researchers around the world," said Francis S. Collins, M.D., Ph.D., director of National Human Genome Research Institute (NHGRI), part of NIH, which led the U.S. component of the Human Genome Project along with the Department of Energy.

The sequencing work on the X chromosome was carried out as part of the Human Genome Project at the Wellcome Trust Sanger Institute in Hinxton, England; Baylor College of Medicine, Houston; Washington University School of Medicine, St. Louis; the Max Planck Institute for Molecular Genetics, Berlin; the Institute of Molecular Biotechnology, Jena, Germany; and Applied Biosystems, Inc., Foster City, CA.

In the first study, an international team of more than 250 genomic researchers led by the Wellcome Trust Sanger Institute described an analysis of the complete DNA sequence of the human X chromosome. In humans and other mammals, sexual identity is governed by a pair of chromosomes referred to as "X" and "Y." Females have two X chromosomes, while males have one X chromosome and one Y chromosome.

One of the central goals of the effort to analyze the human genome is the identification of all genes, which are generally defined as stretches of DNA that code for particular proteins. The new analysis confirmed the existence of 1,098 protein-coding genes on the X chromosome. Only 54 of the 1,098 genes have functional counterparts on the much smaller Y chromosome, which has been described as an "eroded" version of the X chromosome. Interestingly, almost 10 percent of the genes on the X chromosome are part of a somewhat mysterious family of "cancer-testis antigens," which are normally expressed in the testis but also appear in certain cancers, making them possible targets for immunotherapy.

The X chromosome's gene density is among the lowest for the human chromosomes that have been analyzed to date. Researchers say this may reflect a low density of genes on the ancestral chromosome that gave rise to the X chromosome, or it may indicate that genes coding for key proteins that are required in double dose were transferred from the X chromosome to other chromosomes during the course of mammalian evolution.

Despite its relatively low gene density, the X chromosome holds a prominent place in the study and understanding of human disease. This arises from the fact that any defects in genes on the X chromosome are often apparent in males because the Y does not carry corresponding genes to compensate. More than 300 diseases already have been mapped to the X chromosome, and though the X chromosome contains only 4 percent of all human genes, it accounts for almost 10 percent of inherited diseases caused by a single gene, which doctors often refer to as Mendelian disorders. These "X-linked" disorders include red-green color blindness, hemophilia, varied forms of mental retardation and Duchenne muscular dystrophy.

"From studying such genes, we can get remarkable insight into disease processes. But the importance of the sequence goes beyond individual genes. We have also gained a deep insight into the way evolution has shaped the chromosomes that determine our gender to give them unique properties," said Mark Ross, Ph.D., project leader at the Wellcome Trust Sanger Institute.

The research team compared the human X chromosome to the genome sequences of a variety of other organisms, including dog, rat, mouse and chicken. They found that the gene order of the human and dog X chromosomes were virtually identical. Comparing gene order in the human and rodent sequences showed several segments had reshuffled in the rodent lineage, and an interesting, 9 million base pair region appears to have been deleted from the rodent chromosome after humans and rodents diverged from their common ancestor.

Of particular interest was the comparison of the human X chromosome to the sequence of the chicken. Most of the genes on the short arm of the human X are found on chicken chromosome 1, and most of the genes on the long arm of the human X are found on chicken chromosome 4. These findings support the idea that mammalian X and Y chromosomes evolved from an "ordinary" ancestral pair of identical chromosomes.

The second study, which was supported by the NIH's National Institute of General Medical Sciences, focused on the activity of a large set of genes on the X chromosome. Researchers at the Duke University Institute for Genome Sciences & Policy in Durham, N.C., and Pennsylvania State University in University Park surveyed the activity, or expression, of 471 genes on the X chromosomes of 40 women. To their surprise, they found that each woman's X chromosomes showed a unique pattern of gene expression.

More than 45 years ago, researchers discovered that most genes on one copy of a female's X chromosome are switched off – a modification known as X-inactivation. This mechanism thus reduced the level of female expression of genes on the X chromosome to the same level as that in an XY male. Initially, it was thought the process resulted in a complete inactivation, or "silencing," of all of the genes on that copy of the chromosome in a female. However, in the late 1980s, researchers learned that some fraction of the genes remain active. The new work extends those findings to the complete set of X-linked genes.

Specifically, the researchers determined that due to the incomplete nature of X-inactivation, at least 15 percent of genes on the X chromosome produced proteins at higher, often variable, levels in females than in males. Furthermore, in some women but not in others, an additional 10 percent of the X-linked genes are expressed at variable levels.

Much more work is needed to explore the implications of the new findings for human health and disease. However, Duke's Huntington Willard, Ph.D., senior author of the study, said, "We now know that up to 25 percent of the X chromosome can be uniquely expressed in one sex relative to the other. Such differences should be recognized as a potential factor to explain sex-specific traits, both in complex disease as well as normal gender differences."



Publication: These studies, a detailed analysis of the X chromosome's DNA sequence and a survey of its gene activity, are published in the current issue of the journal Nature.
On the web: http://www.nhgri.nih.gov/ 

Advertise in this space for $10 per month. Contact us today.


Related Genetics News
Genetic study of bedbugs may help identify pesticide resistance genes
Novel method of database analysis to help identify responsible genes and diagnostic markers
Environmental influences can be passed down to the next generation
Gene found to be key in etiology of cleft palate
History, geography also seem to shape our genome
Induced pluripotent stem cell lines from pigs
Egg cells help extend life of sperms
Family of genes known as KRAB-ZFP regulate genes dealing with stress
New screening strategy increases Down's syndrome detection before birth
Can genetic research spur racist attitudes?

Subscribe to Genetics Newsletter

Enter your email address:


 Additional information about the news article
In October 2004, the International Human Genome Sequencing Consortium published its scientific description of the finished human genome sequence in Nature. Detailed annotations and analyses have already been published for chromosomes 5, 6, 7, 9, 10, 13, 14, 19, 20, 21, 22 and Y. Publications describing the remaining chromosomes are forthcoming. The sequence of the X chromosome, as well as the rest of the human genome sequence, can be accessed through the following public databases: GenBank (www.ncbi.nih.gov/Genbank) at NIH's National Center for Biotechnology Information (NCBI); the UCSC Genome Browser (www.genome.ucsc.edu) at the University of California at Santa Cruz; the Ensembl Genome Browser (www.ensembl.org) at the Wellcome Trust Sanger Institute and the EMBL-European Bioinformatics Institute; the DNA Data Bank of Japan (www.ddbj.nih.ac.jp); and EMBL-Bank (www.ebi.ac.uk/embl/index.html) at the European Molecular Biology Laboratory's Nucleotide Sequence Database.

NHGRI and NIGMS are among the 27 institutes and centers at NIH, an agency of the Department of Health and Human Services. Additional information about NHGRI can be found at www.genome.gov and additional information about NIGMS can be found at www.nigms.nih.gov.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)