RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Genetics Channel

subscribe to Genetics newsletter
Latest Research : Genetics

   EMAIL   |   PRINT
Recombination as a Way of Life: Viruses Do It Every Day

Mar 4, 2005 - 11:07:00 PM
“can exchange any portion of its genome…with an astonishingly high frequency during the course of a single host infection.”

 
[RxPG] In theory, a cell’s nuclear membrane guards its contents by barring access to potential foes. In reality, pathogens employ a diverse bag of tricks to circumvent this barrier. The murine leukemia virus (a retrovirus), for example, waits until the nuclear membrane degrades during cell division. Other retroviruses, like HIV and so-called pararetroviruses, enlist protein escorts that help them slip through undetected.

Pararetroviruses include both animal viruses, such as hepatitis B, and plant viruses, such as the cauliflower mosaic virus (CaMV). Once inside the nucleus, the double-stranded DNA genome of the CaMV is transcribed into an RNA transcript (called 35S RNA), thanks to the activity of the 35S promoter. (This CaMV promoter is widely used to drive transgenic expression in plants.) Replication proceeds through reverse transcription as a viral enzyme reverse transcribes the 35S RNA into genomic DNA that is then packaged into viral particles.

During replication, genetic material can pass between different viral genomes when two viral particles infect the same host cell. These exchanges can create novel viruses, much like mutations in bacteria can produce new bacterial strains that show resistance to host defenses and antibiotics. But with little data on viral recombination rates in multicellular organisms, it’s unclear how these recombinant viral genomes are influencing host infection. In a new study, Yannis Michalakis and colleagues follow the course of the cauliflower mosaic viral infection in one of its natural hosts, the turnip plant (Brassica rapa), to measure the frequency of viral recombination. Recombination was evident in over half of the recovered viral genomes, suggesting that recombination is routine for this plant virus.

It’s thought that CaMV recombination occurs mostly outside the nucleus, in the host’s cytoplasm, during reverse transcription. To quantify the frequency of such events, Michalakis and colleagues generated a CaMV genome with four genetic markers and then infected 24 turnip plants with equal amounts of marked and unaltered viruses. Recombination between the two “parent” genomes would produce viral populations with genetic material from both parents. The plants were harvested when full-blown symptoms developed, 21 days after inoculation, and viral DNA was extracted from their leaves to evaluate the occurrence and frequency of recombination.

Assuming that all marker-containing genomes could recombine, the authors predicted that the viruses should produce seven classes of recombinant genotypes, which is what they found. These recombinant genotypes showed up in over 50% of the viral populations—which the authors call an “astonishingly high” proportion. Though little information exists on the length of viral replication cycles in plants, the authors assumed a generation time of two days, which would amount to ten replication cycles over the 21-day experimental period. From this assumption, the authors calculated the recombination rate on the order of 4 × 10−5 per nucleotide base per replication cycle—hardly a rare occurrence. Certain CaMV genomic regions have been predicted as recombination hot spots, but the authors found that the virus “can exchange any portion of its genome…with an astonishingly high frequency during the course of a single host infection.”

By evaluating the recombination behavior of a virus in a living multicellular organism, Michalakis and colleagues created a realistic approximation of recombination events during infection in the field. And since recombination events are linked to both expanded viral infection and increased virulence, understanding the rate of recombination could help shed light on mechanisms underlying the evolution and pathology of a virus—insight that could prove critical for developing methods to inhibit or contain an infection.



Publication: (2005) Recombination as a Way of Life: Viruses Do It Every Day. PLoS Biol 3(3): e117.
On the web: Full Text PDF of the article 

Advertise in this space for $10 per month. Contact us today.


Related Genetics News
Genetic study of bedbugs may help identify pesticide resistance genes
Novel method of database analysis to help identify responsible genes and diagnostic markers
Environmental influences can be passed down to the next generation
Gene found to be key in etiology of cleft palate
History, geography also seem to shape our genome
Induced pluripotent stem cell lines from pigs
Egg cells help extend life of sperms
Family of genes known as KRAB-ZFP regulate genes dealing with stress
New screening strategy increases Down's syndrome detection before birth
Can genetic research spur racist attitudes?

Subscribe to Genetics Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030117

Published March 1, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)