RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
  Anaemia
  Hemophilia
  Polycythemia
  Thalassemias
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Haematology Channel

subscribe to Haematology newsletter
Latest Research : Haematology

   EMAIL   |   PRINT
Blood-compatible nanoscale materials possible using heparin

May 7, 2006 - 3:32:00 PM , Reviewed by: Sanjukta Acharya
The researchers demonstrated the composite heparin membrane with nanopores could work as an artificial kidney, or dialyzer, by filtering the blood and maintaining its flow.

 
[RxPG] Researchers from Rensselaer Polytechnic Institute have engineered nanoscale materials that are blood compatible using heparin, an anticoagulant. The heparin biomaterials have potential for use as medical devices and in medical treatments such as kidney dialysis.

The researchers prepared several materials with heparin composites or coatings, including carbon nanotubes, nanofibers, and membranes with nanosized pores, and then demonstrated the materials' high compatibility with blood. Heparin is a common therapeutic used to maintain blood flow or prevent clotting during medical procedures and treatments.

The researchers demonstrated the composite heparin membrane with nanopores could work as an artificial kidney, or dialyzer, by filtering the blood and maintaining its flow. The presence of this blood-compatible dialyzer could potentially eliminate the need for systemic administration of heparin to the patient during kidney dialysis, the researchers say.

The heparin-coated membranes are described in a paper titled "Ionic Liquid-Derived Blood Compatible Membranes for Kidney Dialysis," published online Apr. 24 in advance of print in the Journal of Biomedical Materials Research.

"These heparin composite membranes and fibers and coated carbon nanotubes are an enabling technology," says Saravanababu Murugesan, a recent doctoral graduate in chemical and biological engineering at Rensselaer and lead author of the paper. "Our results show these novel materials have great promise in the development of improved medical devices that are blood compatible."
Blood-compatible nanoscale materials possible using heparin
Image displays blood compatibility of carbon nanotube when coated with heparin.

The research team is led by Robert Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer, and includes collaboration with Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering, and Omkaram "Om" Nalamasu, professor of materials science and engineering, at Rensselaer. Additional co-authors of the paper are Shaker Mousa, director of the Pharmaceutical Research Institute at Albany College of Pharmacy, and Aravind Vijayaraghavan, a recent doctoral graduate in materials science and engineering at Rensselaer. Funding for this research was provided by the National Institutes of Health.

Recent results related to this work have been published online in the journals Langmuir ("Blood Compatible Nanotubes � Nano-based Neoproteoglycans," Mar. 11, 2006) and Biomacromolecules ("Preparation of Biopolymer Fibers by Electrospinning from Room Temperature Ionic Liquids," Jan. 26, 2006). Provisional patents have been filed by Rensselaer Polytechnic Institute.

Research in Linhardt's group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development. Recent discoveries include a synthetic method for preparation of heparin in quantities large enough for use in medical treatment.



Publication: Published online Apr. 24 in advance of print in the Journal of Biomedical Materials Research.
On the web: www.rpi.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Haematology News
Chromosome 21 abnormality tells oncologists to treat pediatric ALL more aggressively
Professor Sir David Weatherall, M.D., recieves 2013 Wallace H. Coulter Award
Dr. John Eng to receive Golden Goose Award
Could sleeping stem cells hold key to treatment of aggressive blood cancer?
Stem cells enable personalised treatment for bleeding disorder
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone
1 of the key circuits in regulating genes involved in producing blood stem cells is deciphered
Blood test predicts breast cancer recurrence
More than a third of high-risk leukemia patients respond to an experimental new drug
Pre-clinical data shows Angiocidin effective against leukemia

Subscribe to Haematology Newsletter

Enter your email address:


 Additional information about the news article
Biotechnology and Interdisciplinary Studies at Rensselaer
At Rensselaer, faculty and students in diverse academic and research disciplines are collaborating at the intersection of the life sciences, the physical sciences, and engineering to encourage discovery and innovation. Rensselaer's four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students focused on the application of engineering and physical and information sciences to the life sciences. Ranked among the world's most advanced research facilities, the Center for Biotechnology and Interdisciplinary Studies at Rensselaer provides a state-of-the-art platform for collaborative research and world-class programs and symposia.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)