RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
  Autoimmune Diseases
  Immunosupressants
  Monoclonal Antibodies
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Immunology Channel

subscribe to Immunology newsletter
Latest Research : Immunology

   EMAIL   |   PRINT
Immune cells help to maintain cognition

Jan 22, 2006 - 3:52:00 PM , Reviewed by: Himanshu Tyagi
"These findings give a new meaning to 'a healthy mind in a healthy body'. They show that we rely on our immune system to maintain brain functionality, and so they open up exciting new prospects for the treatment of cognitive loss."

 
[RxPG] A team of scientists at the Weizmann Institute of Science, led by Prof. Michal Schwartz of the Neurobiology Department, has come up with new findings that may have implications in delaying and slowing down cognitive deterioration in old age. The basis for these developments is Schwartz's team's observations, published today in the February issue of Nature Neuroscience, that immune cells contribute to maintaining the brain's ability to maintain cognitive ability and cell renewal throughout life.

Until quite recently, it was generally believed that each individual is born with a fixed number of nerve cells in the brain, and that these cells gradually degenerate and die during the person's lifetime and cannot be replaced. This theory was disproved when researchers discovered that certain regions of the adult brain do in fact retain their ability to support and promote cell renewal (neurogenesis) throughout life, especially under conditions of mental stimuli and physical activity. One such brain region is the hippocampus, which subserves certain memory functions. But how the body delivers the message instructing the brain to step up its formation of new cells is yet unknown.

The central nervous system (CNS), comprising the brain and spinal cord, has been considered for a long time as "a forbidden city", in which the immune system is denied entry as its activity is perceived as a possible threat to the complex and dynamic nerve cell networks. Furthermore, immune cells that recognize the brain's own components("autoimmune" cells) are viewed as a real danger as they can induce autoimmune diseases. Thus, although autoimmune cells are often detected in the healthy individual, their presence there was perceived as an outcome of the body's failure to eliminate them. But Schwartz's group showed that these autoimmune cells have the potential ability – if their levels are controlled – to fight off debilitating degenerative conditions that can afflict the CNS, such as Alzheimer's and Parkinson's diseases, glaucoma, amyotrophic lateral sclerosis (ALS), and the nerve degeneration that results from trauma or stroke.

In their earlier research, Schwartz and her team provided evidence to suggest that T cells directed against CNS components do not attack the brain but instead, recruit the help of the brain's own resident immune cells to safely fight off any outflow of toxic substances from damaged nerve tissues.

In the present study, the scientists showed that the same immune cells may also be key players in the body's maintenance of the normal healthy brain. Their findings led them to suspect that the primary role of the immune system's T cells (which recognize brain proteins) is to enable the "neurogenic" brain regions (such as the hippocampus) to form new nerve cells, and maintaining the individual's cognitive capacity. The research team led by Prof. Schwartz, included graduate students Yaniv Ziv, Noga Ron and Oleg Butovsky, and in collaboration with former graduate student Dr. Jonathan Kipnis and with Dr. Hagit Cohen of the Ben-Gurion University of the Negev, Beer Sheva.

It was reported before that rats kept in an environment rich with mental stimulations and opportunities for physical activity exhibit increased formation of new nerve cells in the hippocampus. In the present work, the scientists showed for the first time that formation of these new nerve cells following environmental enrichment is linked to local immune activity. To find out whether T cells play a role in this process they repeated the experiment using mice with severe combined immune deficiency (scid mice), which lack T cells and other important immune cells. Significantly fewer new cells were formed in those mice. On repeating the same experiment, this time with mice possessing all of the important immune cells except for T cells, they again found impairment of brain-cell renewal, confirming that the missing T cells were an essential requirement for neurogenesis. They observed that the specific T cells that are helping the formation of new neurons are the ones recognizing CNS proteins.

To substantiate their observations, the scientists injected T cells into immune-deficient mice with the objective of replenishing their immune systems. The results: cell renewal in the injected mice was partially restored – a finding that supported their theory.

In another set of experiments, they found that mice possessing the relevant CNS-specific T cells performed better in some memory tasks than mice lacking CNS-specific T cells. Based on these findings, the scientists suggest that the presence of CNS-specific T cells in mice plays a role in maintaining learning and memory abilities in adulthood.

Schwartz points out that the role of the autoimmune T cells is not to affect the level of intelligence or motivation, but rather, to allow the organism to achieve the full potential of its brainpower. "These findings," she says, "give a new meaning to 'a healthy mind in a healthy body'. They show that we rely on our immune system to maintain brain functionality, and so they open up exciting new prospects for the treatment of cognitive loss." Knowledge that the immune system contributes to nerve cell renewal has potential far-reaching implications for elderly populations, because aging is known to be associated with a decrease in immune system function. It is also accompanied by a decrease in new brain cell formation, as well as in memory skills. Therefore, by manipulating and boosting the immune system, it might be possible to prevent or at least slow down age-related loss of memory and learning abilities.



Publication: February issue of Nature Neuroscience
On the web: www.weizmann-usa.org 

Advertise in this space for $10 per month. Contact us today.


Related Immunology News
NIH renews funding for University of Maryland vaccine research
Traffic pollution and wood smoke increases asthma in adults
82 percent of adults support banning smoking when kids are in the car
Dr. Laurie Glimcher receives the Advancing Women in Science and Medicine Award
Parents who suck on their infants' pacifiers may protect their children against developing allergy
Genetics defines a distinct liver disease
Scientists find ethnicity linked to antibodies
Bird flu mutation study offers vaccine clue
Researchers developing antiviral drug to combat contagious norovirus
Nerve damage may underlie widespread, unexplained chronic pain in children

Subscribe to Immunology Newsletter

Enter your email address:


 Additional information about the news article
Prof. Michal Schwartz's research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Alan T. Brown Foundation to Cure Paralysis; the Carl and Micaela Einhorn-Dominic Institute for Brain Research; Mr. and Mrs. Irwin Green, Boca Raton, FL; and Mr. and Mrs. Richard D. Siegal, New York, NY.

Prof. Schwartz is the incumbent of the Maurice and Ilse Katz Professorial Chair of Neuroimmunolgy.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)