RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
  Autoimmune Diseases
  Immunosupressants
  Monoclonal Antibodies
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Immunology Channel

subscribe to Immunology newsletter
Latest Research : Immunology

   EMAIL   |   PRINT
Insights into immune defense behaviour of Microglial cells in the brain

Apr 18, 2005 - 9:48:00 PM
"We take it that our approach to monitor microglia in vivo can be transferred to other models of disease, for example, existing animal models of Alzheimers disease and thus to contribute to a better understanding of these busy housekeepers in the brain"

 
[RxPG] Researchers from the Max Planck Institute for Medical Research in Heidelberg and the Max Planck Institute of Experimental Medicine in Goettingen (Germany) have uncovered the behaviour of microglial cells in the brain. In the current online edition of Science (Science, Epub ahead of print, 14. April 2005) they report on the busy action of these immune defense cells in the normal brain and their rapid response to cerebral hemorrhage in the first few hours following injury. Their imaging approach is transferable to other models of disease, and monitoring microglia behaviour under such circumstances promises to substantially enhance our knowledge about brain pathologies.

Microglial cells are the primary immunocompetent cells in the brain. They are the first responsive element to any kind of brain damage or injury. Microglia are critically involved, for example, in neurodegenerative diseases and stroke. So far, microglial cells have been studied in vitro, i.e. outside the living organism. As a result, key aspects of microglia function have remained elusive such as their behavior in the intact brain or their immediate response to brain injury.

Now a German team of researchers from two Max Planck Institutes in Heidelberg and Goettingen (Germany) report a breakthrough in the study of microglial cells in vivo. They uncovered the behaviour of microglial cells in the intact brain by making use of two key technologies: two-photon microscopy and a transgenic mouse model. While mice employed in their experiments were genetically modified to produce a green fluorescent protein (GFP), infrared laser light was used to excite GFPs and thus to visualize stained cells in the micoscope via detection of emitted fluorescent light - even through the intact mouse skullcap. Their findings appear in this weeks online edition of Science (Epub ahead of print).

In their paper, Axel Nimmerjahn and fellow authors Frank Kirchhoff and Fritjof Helmchen provide a detailed description of microglia behavior in the normal brain and in response to cerebral hemorrhage. In the normal brain, the researchers found that fine processes of so called "resting" microglial cells are not at rest at all. Rather, they constantly sampled their microenvironment with highly motile processes and protrusions. In doing so, they continually interacted with neurons and other cells in the brain. "This persistent interaction seems to be particularly important in maintaining regular brain function" says Frank Kirchhoff.

The team, led by Fritjof Helmchen at the Max Planck Institute in Heidelberg, induced cerebral hemorrhage by causing targeted disruptions of the blood-brain barrier through brief, intense and highly localized laser illumination. "Such injuries may serve as a model for hypertension-induced stroke, that is manifested by bursting of a - in general larger - blood vessel leading to damage of surrounding areas" says Axel Nimmerjahn. The researches found that within a few minutes processes of microglial cells rushed through the gaps of surrounding tissue towards the injured blood vessel segment, apparently shielding the injured site, followed by decomposition of damaged or marred tissue. Notably, the larger the affected area the more microglial cells participated in the immune response.

"We take it that our approach to monitor microglia in vivo can be transferred to other models of disease, for example, existing animal models of Alzheimers disease and thus to contribute to a better understanding of these busy housekeepers in the brain" says Fritjof Helmchen. Deciphering the complex actions and cellular mechanisms underlying microglia function in health and disease may be critical to the development of new therapeutic approaches for both treatment and prevention of brain pathology.



Publication: Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting Microglial Cells are Highly Dynamic Surveillants of Brain Parenchyma in vivo, Science, Epub ahead of print, 14 April 2005
On the web: www.mpg.de 

Advertise in this space for $10 per month. Contact us today.


Related Immunology News
NIH renews funding for University of Maryland vaccine research
Traffic pollution and wood smoke increases asthma in adults
82 percent of adults support banning smoking when kids are in the car
Dr. Laurie Glimcher receives the Advancing Women in Science and Medicine Award
Parents who suck on their infants' pacifiers may protect their children against developing allergy
Genetics defines a distinct liver disease
Scientists find ethnicity linked to antibodies
Bird flu mutation study offers vaccine clue
Researchers developing antiviral drug to combat contagious norovirus
Nerve damage may underlie widespread, unexplained chronic pain in children

Subscribe to Immunology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)