RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Infectious Diseases Channel

subscribe to Infectious Diseases newsletter
Latest Research : Infectious Diseases

   EMAIL   |   PRINT
Forecasting the Path of a Raccoon Rabies Epidemic

Mar 4, 2005 - 11:07:00 PM
A new strain of raccoon rabies started spreading throughout the eastern United States in the mid-1970s, after raccoons caught in Florida were released along the West Virginia–Virginia border to replenish hunting stocks.

 
[RxPG] Rabies recently hit the national headlines when a Wisconsin teenager survived after showing full-blown symptoms. Even more remarkable, the girl—who was bitten by a bat—recovered after receiving a novel therapy, since doctors felt her case was too advanced for the standard rabies inoculations to work. Rabies is nearly always fatal if not treated immediately, and continues to pose a serious public health threat. Though most rabies fatalities in the United States stem from bat bites, far more people are treated for raccoon rabies.

A new strain of raccoon rabies started spreading throughout the eastern United States in the mid-1970s, after raccoons caught in Florida were released along the West Virginia–Virginia border to replenish hunting stocks. Some of the imports carried a rabies variant that caused an outbreak in local populations and has been steadily expanding ever since. In 1990, raccoons topped the list of most often reported rabid mammal.

Controlling this re-emerging public health threat depends on predicting the spatial dynamics of the disease—where new outbreaks might occur and how the virus might spread. Toward this end, Leslie Real and colleagues work on probabilistic simulation models that calculate the effects of various factors, such as local transmission rates between townships, ecological barriers to transmission, and long-distance “translocation” rates between townships. (The deliberately released Florida raccoons were one such translocation, but raccoons have also been known to hitch rides on garbage trucks.) As reported elsewhere, these models previously accurately reflected rabies spread in both Connecticut and New York. In a new study reported in PLoS Biology, Real and colleagues apply their model to the likely spread of rabies in Ohio—a potential gateway for spread throughout the Midwest—and find that raccoon rabies could spread throughout the state in just three years.

One strategy for limiting rabies spread is to establish vaccine corridors by distributing vaccine baits—vaccine doses hidden in fishmeal—to wild raccoons. This cordon sanitaire strategy limited rabies in Ohio to sporadic cases from 1997 until 2004, when a rabid animal was detected—11 kilometers beyond the buffer zone—in northeastern Ohio. The authors had previously shown that local transmission was significantly reduced when townships were separated by geographical barriers—the Connecticut River in Connecticut and the Adirondack Mountains in New York. In modeling the likely transmission path in Ohio, the authors incorporated the likely effect of Ohio’s five major rivers on transmission from local points along the Pennsylvania or West Virginia border.

Given Ohio’s topography (three of its rivers run along the southern and eastern border) and a single point of emergence in the northeast, the authors adjusted their simulations to estimate the potential impact of translocations. Even without the occasional garbage truck ride, because of the lack of ecological barriers in central Ohio, the simulations predict that rabies will spread far faster in Ohio than in New York and Connecticut.

Factoring in those garbage truck rides, the scenario is considerably bleaker: rabies would take just 33 months to spread across central Ohio—compared to 48 months to cross the much smaller state of Connecticut—and cover the state in 41 months. This transmission rate—100 kilometers/year—significantly surpasses previous estimates, which range from 30 to 60 kilometers/year. The potential for such rapid spread, if unchecked, “is quite alarming,” the authors warn. But they also point out that the path of a real epidemic would likely fall somewhere between these two scenarios, given the unpredictable nature of translocations. The authors also simulated potential breech points in the vaccine corridor and found that the Ohio and Muskingum rivers halted viral advance initially. But a raccoon can certainly cross a bridge when the opportunity arises, so any delays would likely be temporary.

Given the unpredictable nature of rabies transmission—challenging efforts to identify potential leaks in vaccine corridors and sites of dispersal—the authors’ simulations provide a valuable resource for anticipating alternate outbreak scenarios and preparing multiple game plans to prevent or contain them. They also indicate the best sites for establishing a new vaccine barrier. And given how fast raccoon rabies could spread, Real and colleagues make a strong case that halting its western march depends on a strategy based on early detection and high-powered intervention programs—a sensible approach for any infectious disease.



Publication: (2005) Forecasting the Path of a Raccoon Rabies Epidemic . PLoS Biol 3(3): e115.
On the web: Full Text PDF of the article 

Advertise in this space for $10 per month. Contact us today.


Related Infectious Diseases News
4 UCLA stem cell researchers receive CIRM Early Translational grants
Professor Vanessa Hayes awarded for exceptional Africa-related work
Plant-based compound may inhibit HIV
Innovative intervention program improves life for rural women in India living with HIV/AIDS
The American Society for Microbiology honors Baligh Yehia
Thomas J. Coates receives 2013 Elizabeth Fries Health Education Award
Scientists find ethnicity linked to antibodies
2013 Canada Gairdner Global Health Award goes to King Holmes for STD work
Study identifies ways to increase HIV testing, reduce HIV infection
A device to speed up HIV diagnostic test

Subscribe to Infectious Diseases Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030115

Published March 1, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)