RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Infectious Diseases Channel

subscribe to Infectious Diseases newsletter
Latest Research : Infectious Diseases

   EMAIL   |   PRINT
Mass Spectometry based SARS Genotyping

Feb 22, 2005 - 9:47:00 PM
The study suggests that MS-based genotyping can be used for large-scale genetic characterization of viral DNA from clinical samples. The researchers found that the method was accurate and sensitive, with a 95% success rat e for detecting sequence variations at low virus concentrations.

 
[RxPG] To quickly control infectious disease outbreaks, extensive information is required to identify the source and transmission routes, and to evaluate the effect of containment policies. Traditionally, scientists have used travel- and contact-tracing methods, but the recent SARS epidemic showed that sequence-based techniques for pathogen detection can also be important tools to help understand outbreaks. Jianjun Liu and colleagues adapted mass spectrometry (MS)–based genotyping, already used as a high-throughput way of detecting single nucleotide polymorphisms in human DNA, to the analysis of the SARS virus from clinical samples.

The major breakthroughs against SARS were the discovery of the SARS coronavirus (SARS-CoV) as the etiological agent and the sequencing of the SARS genome. Liu's colleagues at the Genome Institute of Singapore had previously shown that common genetic variants in the SARS-CoV genome could be used as molecular fingerprints to help trace the route of infection. However, as “sequence analysis of large numbers of clinical samples is challenging, cumbersome, and expensive,” they felt that “what is needed is a rapid, sensitive, high throughput, and cost-effective screening method.” Towards this goal, Liu and colleagues now demonstrate that an MS-based technique can quickly yield accurate information on clinical isolates (in this case from the 2003 SARS outbreak in Singapore).

The scientists demonstrate the sensitivity of the assay in detecting SARS-CoV variations and test it further in cultured viral isolates and uncultured lung tissue samples of SARS-CoV. They analyzed isolates taken from 13 patients with SARS at different stages of the Singapore outbreak, identified nine sequence variations, and discovered a new primary route of introduction of the virus into the Singapore population. They also found a Singaporean origin for a German case of SARS, a result that could not be derived from standard sequencing methods. The analysis of the uncultured lung tissue also found different sequences in a single patient, which suggested the presence of multiple viral sequence variants in one host.

The study suggests that MS-based genotyping can be used for large-scale genetic characterization of viral DNA from clinical samples. The researchers found that the method was accurate and sensitive, with a 95% success rat e for detecting sequence variations at low virus concentrations. The MS-based assay allows high-throughput analysis and complements the “gold standard” direct sequence analysis method, which is used to identify new sequence variations. As such, it is particularly useful for investigating agents for which extensive sequence information exists.

Liu and colleagues propose that the most efficient method for a large-scale population investigation would be initial characterization of a genome sequence by direct sequence analysis in a subset of samples, followed by MS-based analysis of informative genetic variations. Altogether, their results suggest that MS-based genetic analysis can help real-time investigations in disease outbreaks.



Publication: Citation: (2005) Mass Spectometry–Based SARS Genotyping. PLoS Med 2(2): e52.
On the web: Full Text PDF of Article (395K) 

Advertise in this space for $10 per month. Contact us today.


Related Infectious Diseases News
4 UCLA stem cell researchers receive CIRM Early Translational grants
Professor Vanessa Hayes awarded for exceptional Africa-related work
Plant-based compound may inhibit HIV
Innovative intervention program improves life for rural women in India living with HIV/AIDS
The American Society for Microbiology honors Baligh Yehia
Thomas J. Coates receives 2013 Elizabeth Fries Health Education Award
Scientists find ethnicity linked to antibodies
2013 Canada Gairdner Global Health Award goes to King Holmes for STD work
Study identifies ways to increase HIV testing, reduce HIV infection
A device to speed up HIV diagnostic test

Subscribe to Infectious Diseases Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pmed.0020052

Published: February 22, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Medicine is an open-access journal published by the nonprofit organization Public Library of Science.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)