RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Infectious Diseases Channel

subscribe to Infectious Diseases newsletter
Latest Research : Infectious Diseases

   EMAIL   |   PRINT
New discovery could lead to more effective pneumonia vaccine

Dec 23, 2004 - 3:22:00 PM

 
[RxPG] Scientists at St. Jude Children's Research Hospital have discovered that the shape of a protein on the surface of pneumonia bacteria helps these germs invade the human bloodstream. This finding, published Dec. 16 online by the EMBO Journal, could help scientists develop a vaccine that is significantly more effective at protecting children against the disease.

The St. Jude researchers determined the shape of a large, paddle-like molecule that Streptococcus pneumoniae bacteria use to latch onto cells lining the throat and lungs. The protein, called CbpA, binds to a molecule on the cell called pIgR, which takes antibodies from the bloodstream on one side of the cell and transports them to the other side. There it releases the antibody at the lining of the throat and lungs. If a pneumococcus bacterium is hovering on the lining of the respiratory tract, this germ binds to pIgR and pushes this antibody shuttle back through the cell to the bloodstream. Once at the other side of the cell, the pneumococcus breaks free of pIgR and enters the blood, where it can multiply and infect the body.

S. pneumoniae is the only bacterium known to use CbpA to invade human cells by binding to pIgR, according to Richard W. Kriwacki, Ph.D., associate member of St. Jude Structural Biology. Kriwacki is senior author of the EMBO Journal report. "The fact that we now know the structure of this important protein means we can begin to develop a vaccine that is more effective in children than those that are currently available," Kriwacki said.

Elaine Tuomanen, M.D., chair of Infectious Diseases and director of the Children's Infection Defense Center at St. Jude, is co-author of the EMBO Journal paper.

"Using CbpA as the key part of a new vaccine against S. pneumoniae would solve a problem that now hinders our ability to protect children from this infection," Tuomanen said.

Current pneumonia vaccines designed to protect adults against more than two dozen strains of S. pneumoniae do not work in young children. Adult vaccines are composed of pieces of carbohydrates naturally appearing on the surface of these bacteria. When used in a vaccine, these pieces of carbohydrate stimulate the immune system to make antibodies against the real carbohydrate targets on the bacteria. The problem with such vaccines is that the immune systems of very young children (younger than two years) do not naturally respond to carbohydrates. Pneumococcus vaccines for children must instead be modified by binding those carbohydrates to special proteins that stimulate the immune systems of young children.

"However such vaccines are so complex that they can carry carbohydrate targets for only a few specific strains of pneumonia bacteria," Tuomanen said. "So children are always under-protected, since there are so many different strains of these bacteria."

Knowing the shape of CbpA will guide researchers in their efforts to use part or all of this protein as the basis of a vaccine against S. pneumoniae.

"CbpA is a very large protein," Tuomanen said. "Now that we know what it looks like and how it's put together, we can pull it apart to see if smaller pieces of it can be used to make a vaccine that triggers production of antibodies against the CbpA. Since all the S. pneumoniae strains need CbpA to invade the bloodstream, we can widen the protection of a vaccine to all 90 types of pneumococcus by just adding CbpA, or a piece of CbpA."

The discovery of the structure of CbpA was a two-step process that included studies of how this protein works, followed by determination of its actual structure using powerful laboratory tools.

Previous work by another team suggested that CbpA binds to pIgR. However, that finding was made in "test-tube" experiments without using actual bacteria. So the St. Jude team developed pneumococcus bacteria that had mutated CbpA in order to prove that live bacteria with mutated CbpA could not bind to pIgR on cells.

"Our work confirmed that the pneumococcus uses CbpA to bind to human cells," said Beth Mann, a research laboratory specialist in Tuomanen's lab who developed the bacteria carrying mutated CbpA. Mann, co-author of the paper, also showed that the long, paddle-shaped extensions of the protein must be folded in a specific way in order for CbpA to work.

The discovery of the actual shape of CbpA was made using nuclear magnetic resonance (NMR) spectroscopy and circular dishroism (CD). NMR combines radio wave emissions and a powerful magnetic field to determine the structure of proteins suspended in solutions, while CD measures differences in the absorption of different types of polarized light by molecules to determine their shape. It also can show how that shape can change when the protein interacts with another molecule. "This work required that we develop new NMR methods in order to determine the shape of this protein, which undergoes changes as it interacts with pIgR," said Rensheng Luo, Ph.D., a post-doctoral fellow in St. Jude Structural Biology and Infectious Diseases and first author of the paper.

Other authors of the paper are William S. Lewis, Richard Heath, Siva Sivakolundu, Eilyn R. Lacy (St. Jude); Arthur Rowe (University of Nottingham, Leicestershire, UK); Agnes E. Hamburger (California Institute of Technology, Pasadena, Calif.) and Pamela J. Bjorkman (Howard Hughes Medical Institute, California Institute of Technology).



Publication: published on Dec. 16 online by the EMBO Journal

Advertise in this space for $10 per month. Contact us today.


Related Infectious Diseases News
4 UCLA stem cell researchers receive CIRM Early Translational grants
Professor Vanessa Hayes awarded for exceptional Africa-related work
Plant-based compound may inhibit HIV
Innovative intervention program improves life for rural women in India living with HIV/AIDS
The American Society for Microbiology honors Baligh Yehia
Thomas J. Coates receives 2013 Elizabeth Fries Health Education Award
Scientists find ethnicity linked to antibodies
2013 Canada Gairdner Global Health Award goes to King Holmes for STD work
Study identifies ways to increase HIV testing, reduce HIV infection
A device to speed up HIV diagnostic test

Subscribe to Infectious Diseases Newsletter

Enter your email address:


 Additional information about the news article
This work was supported in part by ALSAC, the National Cancer Institute, National Institute of Allergy and Infectious Diseases, National Center for Research Resources and a Cancer Center (CORE) Support Grant.

St. Jude Children's Research Hospital
St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)