RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
  Hip
  Osteomyelitis
  Osteoporosis
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Orthopedics Channel

subscribe to Orthopedics newsletter
Latest Research : Orthopedics

   EMAIL   |   PRINT
A Natural Molecule will Help Fractures Heal Fast and Generate New Bone Growth

Apr 24, 2005 - 4:19:00 PM
"For the average person, this new development potentially means faster, more reliable bone healing with fewer side effects at a lower cost. In more severe cases, such as in children born with congenital anomalies, the new protein may offer an advanced solution to repair cleft palates, which involves bone deficiencies, and also aid in repairing other bone defects such as fractures, spinal fusion and implant integration."

 
[RxPG] By studying diseases in which the human body generates too much bone, UCLA researchers have discovered and isolated a natural molecule that can be used to heal fractures and generate new bone growth in patients who lack it.

Bioengineering professor Ben Wu at UCLA's Henry Samueli School of Engineering and Applied Science, and Kang Ting, Thomas R. Bales Professor at UCLA's School of Dentistry, are developing a new molecule they've named UCB, or University of California Bone.

The core technology developed by Wu and Ting is potentially the most significant advancement in bone regeneration since the discovery of bone morphogenetic proteins by Dr. Marshall Urist at UCLA in the 1960s.

"For the average person, this new development potentially means faster, more reliable bone healing with fewer side effects at a lower cost," Ting said. "In more severe cases, such as in children born with congenital anomalies, the new protein may offer an advanced solution to repair cleft palates, which involves bone deficiencies, and also aid in repairing other bone defects such as fractures, spinal fusion and implant integration."

UCB differs significantly from bone morphogenetic protein, the protein currently used by orthopedic surgeons to aid in bone repair, in that UCB potentially has fewer side effects. With bone morphogenetic proteins, bone formation has been observed to occur at locations outside of the intended implant site, and tissue other than bone also has been reported.

In contrast, UCB's main effects appear to be more specific towards bone formation process, giving surgeons increased control over where bone forms.

According to Wu, UCB is more specific because it works downstream from the body's "master switch" for bone formation. Because the two molecules act on different targets, UCB also works synergistically with bone morphogenetic proteins to form more bone than typically is possible with bone morphogenetic proteins alone.

The key to success for these proteins is designing the right carrier -- using the protein alone is not effective. Currently, bone morphogenetic proteins are delivered with a collagen-sponge into the area where bone growth is needed. The sponge offers few biological benefits for the surgeon, and proteins can migrate away from the sponge.

In contrast, the team at UCLA is developing a carrier that is engineered for UCB activities in the biological environment.

"It's the right combination of carrier and protein that further increases the stability and activity of UCB," Ting said. "For certain clinical applications, we will need to develop injectable options that are minimally invasive. For other clinical applications, we will need moldable carriers that can hold the UCB in place better. By making life easier for the surgeons, they can focus on the surgery. Ultimately, the patient benefits."

Another current option is to use the patient's own bone grafted from another part of the body.

"Right now, we are doing a lot of spinal fusions and these fusions require us to have bone graft material. The problem with taking a patient's own bone for this procedure is that aside from the pain, which often becomes severe and persistent, there is a high risk of infection. This adds higher risk to the surgery," said Dr. Jeffrey Wang, chief of orthopaedic spine service at the UCLA Comprehensive Spine Center. "The discovery of UCB could potentially be a better way to do spinal fusion. Used in conjunction with cartilage growth, this discovery may completely change the way we look at things in the future."

Bone morphogenetic proteins, found in demineralized bone, were discovered in the 1960s, but until the advent of biotechnology, the arduous process and high cost associated with making them from animal-derived bone was deemed too difficult. To date, only two companies have received FDA approval for bone morphogenetic proteins, making the product costly and the treatment prohibitive for many.

Ting, who works frequently with children who have congenital anomalies, began his bone research eight years ago. Wu joined him three years ago, and their collaboration resulted in the recent discovery.

"I thought it was important to understand how accelerated bone growth in one situation might be applied to situations where more bone growth could accelerate healing in those patients who lacked normal or necessary bone formation," Ting said. "This discovery will provide another option for patients. Competition will make treatment options safer, less expensive and more accessible for those families who really need it."

The team of UCLA researchers, under the business name Bone Biologics, already has begun forming partnerships that may assist in the development of appropriate carriers for UCB. The Musculoskeletal Transplant Foundation, the nation's largest tissue bank, has signed a collaborative development agreement with Wu and Ting to provide customized tissue forms to support the delivery of UCB.

"We are excited by the initial work of Drs. Wu and Ting," said Bruce Stroever, president and CEO of the Musculoskeletal Transplant Foundation. "The development of new protein sources tied to an appropriate carrier that encourages new bone formation and speeds healing is work that is synergistic to the foundation's mission of advancing the science of bone, ligament, cartilage and skin transplantation. We are pleased to be working with UCLA."

Wu and Ting anticipate FDA approval and first sales of the product in the next seven to nine years. Other collaborators on this technology include Dr. Xinli Zhang and Dr. Chia Soo at UCLA, and Dr. Shunichi Kuroda at Osaka University. The new technology recently has been awarded the prestigious 2005 Hatton Award from the International Association of Dental Research.



On the web: www.ucla.edu 

Advertise in this space for $10 per month. Contact us today.


Related Orthopedics News
Virtual models of human knee joints to study joints at tissue and cellular level
Delayed treatment of anterior cruciate ligament injuries lead to higher rates of other knee injury
Epidural steroid injections- an efficient treatment option for lumbar disc herniations
Gene in measles virus plays a key role in Paget's disease of bone
Ultrasound device speeds up broken bone healing
Programme reduces hip fractures by 37 percent
Drink tea for stronger bones, suggests study
Second SPORT Study Shows Surgery Advantage for Spinal Stenosis and Slipped Vertebra
Molecule that destroys bone also protects it, new research shows
Annual treatment with Zoledronic acid significantly reduces bone fractures

Subscribe to Orthopedics Newsletter

Enter your email address:


 Additional information about the news article
Contact: Melissa Abraham
[email protected]
310-206-0540
University of California - Los Angeles
http://www.ucla.edu
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)