RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
A gene that protects from kidney disease

Jul 8, 2007 - 4:00:00 AM
To find out if GLIS2 has the same effect in humans Friedhelm Hildebrandt and his team at the University of Michigan carried out a genetic screen of patients suffering from NPHP. They found that like the mouse model some patients carried mutations in the same GLIS2 gene, confirming that GLIS2 is a crucial player in NPHP also in humans.

 
[RxPG] Researchers from the European Molecular Biology Laboratory (EMBL) and the University of Michigan have discovered a gene that protects us against a serious kidney disease. In the current online issue of Nature Genetics they report that mutations in the gene cause nephronopthisis (NPHP) in humans and mice. NPHP is a disease marked by kidney degeneration during childhood that leads to kidney failure requiring organ transplantation. The insights might help develop effective, noninvasive therapies.

The kidneys are the organs that help our body dispose of potentially harmful waste. Diseases that affect this fundamental function are very serious but so far only poorly understood. NPHP is such a disease; it causes the kidneys to degenerate and shrink starting early on in childhood often leading to renal failure before the age of 30. So far, kidney transplantation in early age has been the only way to save patients suffering from NPHP. With a new mouse model Mathias Treier and his group at EMBL have shed new light on the molecular mechanisms underlying NPHP opening up novel ways to treat the disease.

“Our mice show striking similarities with NPHP patients,” says Mathias Treier, group leader at EMBL. “Very early on in their lives their kidney cells start to die and the mice develop all the characteristic disease symptoms. It is the first time that a mouse model reveals increased cell death as the mechanism underpinning kidney degeneration in NPHP. The genetic cause is a mutation in a gene called GLIS2.”

GLIS2 normally prevents cell death in the adult kidney. It does so by shutting down genes that initiate cell death and that are only required during the development of the organ. A mutation interfering with GLIS2 function reactivates these harmful genes the result being that large numbers of kidney cells die. The organ shrinks and changes in its architecture occur which affect normal kidney function.

To find out if GLIS2 has the same effect in humans Friedhelm Hildebrandt and his team at the University of Michigan carried out a genetic screen of patients suffering from NPHP. They found that like the mouse model some patients carried mutations in the same GLIS2 gene, confirming that GLIS2 is a crucial player in NPHP also in humans.

“This is an excellent example of how combining basic research with clinical studies can help uncovering mechanisms of human disease,” says Henriette Uhlenhaut who carried out the research in Treier’s lab. “The next step will be to translate the insights gained into new therapeutic approaches to develop alternatives to kidney transplantations. With GLIS2 we have already identified one promising candidate drug target and our mouse model will help us find many others.”




Publication: Nature Genetics

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)