Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

A new tool for brain research


Aug 1, 2013 - 4:00:00 AM

 

Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG).

The work will enable neuroscientists to map a kind of brain function that up to now could not be studied, allowing a more accurate exploration of how both healthy and diseased brains work.

Functional MRI is commonly used to study how the brain works, by providing spatial maps of where in the brain external stimuli, such as pictures and sounds, are processed. The fMRI scan does this by detecting indirect changes in the brain's blood flow in response to changes in electrical signalling during the stimulus.

A signal change that happens after the stimulus has stopped is also observed with the fMRI scan. This is called the post-stimulus signal and up until now it has not been used to study how the brain works because its origin was uncertain.

In novel experiments, the research team has now combined fMRI techniques with EEG, which measures electrical activity in the brain, to show that the post-stimulus signal also actually reflects changes in brain signalling.

18 healthy volunteers were monitored by using EEG to measure the electrical activity generated by their brains' neurons (the signalling cells) while simultaneously recording fMRI measurements. A stimulus of electrical pulses was used to activate the part of the brain that controls movement in the right thumb.

The scientists then compared the EEG and fMRI signals and found that they both vary in the same way after the stimulus stops. This provides compelling evidence that the post-stimulus fMRI signal is a measure of neuronal activity rather than just changes in the brain's blood flow. Curiously, the team also found the post-stimulus fMRI signal was not consistent, even though the stimulus input to the brain was the same each time. This natural variability in the brain response was also reflected by the EEG activity and the researchers suggest that this signal might help the brain make the transition from processing stimuli back to their internal thoughts in different ways.

Dr Karen Mullinger from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre said: This work opens a new window of time in the fMRI signal in which we can look at what the brain is doing. It may also open up new research avenues in exploring the function of the healthy brain and the study of neurological diseases.

Dr Stephen Mayhew from Birmingham University Imaging Centre said We do not know what the exact role of the post-stimulus activity is or why this response is not always consistent when the stimulus input to the brain is the same. We have already secured funding through the Birmingham-Nottingham Strategic Collaboration Fund to continue this research into further understanding of human brain function using combinations of neuroimaging methods.

Director of the Sir Peter Mansfield Magnetic Resonance Centre, Professor Peter Morris, said: Functional magnetic resonance imaging is the main tool available to cognitive neuroscientists for the investigation of human brain function. The demonstration in this paper, that the secondary fMRI response (the post-stimulus undershoot) is not simply a passive blood flow response, but is directly related to synchronous neural activity, as measured with EEG, heralds an exciting new chapter in our understanding of the workings of the human mind.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)