RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
A New Role for a Protein Involved in Energy Metabolism

Mar 18, 2005 - 5:31:00 PM
Altogether, these results demonstrate PGC-1α’s critical role in regulating the adaptive metabolic responses required by the increasing energy demands and changing physiological stimuli associated with a growing organism. The increased fat stores and weight gain in the knockout mice, the authors propose, could result from a systemic reduction in energy use, related to defective mitochondria.

 
[RxPG] Adjusting to life after birth takes a lot of energy. One way cells meet increased demand is by ramping up synthesis of mitochondria, the cells’ power generators. This ability to increase mitochondria becomes limited in a variety of diseases including diabetes and heart failure. Therefore, it is important to identify the factors that control mitochondrial function. One way researchers have searched for candidate proteins that play a role in this process is by overexpressing proteins in targeted cells to see what happens. That’s how several previous studies concluded that a protein called PGC-1α triggers pathways that promote mitochondrial synthesis and regulate both mitochondrial activity and energy metabolism.

In a new study, Daniel Kelly and colleagues took a different approach. Rather than increasing the protein’s activity, they blocked it. To do that, Kelly and colleagues engineered “knockout” mice that lack functional copies of the PGC-1α gene. PGC-1α, they found, isn’t absolutely required for mitochondrial biogenesis but plays a vital role later in life by “boosting” the ability of cells to increase mitochondrial function in response to the shifting energy demands and physiological stresses encountered after birth.

Though leaner than the control mice soon after birth, by 18 weeks the female knockouts were slightly heavier and had more body fat, even though their food intake and activity levels matched the controls. Knockout mice had observable growth defects in skeletal and heart muscle—tissues with high mitochondrial energy requirements—were less active and more easily fatigued than the controls, and had abnormal heart rates after physical exertion. And their livers showed a propensity to accumulate fat because of abnormal mitochondria.

Altogether, these results demonstrate PGC-1α’s critical role in regulating the adaptive metabolic responses required by the increasing energy demands and changing physiological stimuli associated with a growing organism. The increased fat stores and weight gain in the knockout mice, the authors propose, could result from a systemic reduction in energy use, related to defective mitochondria. Given the recently reported link between PGC-1α mutations and human obesity and diabetes, this connection will likely trigger further investigations. And given the pivotal role mitochondria play in a wide range of organs, this mouse model could help shed light on metabolic defects associated with a wide range of diseases.

Interestingly, another group, led by Bruce Spiegelman, reported on a PGC-1α knockout model last year. Their mice share traits with the mice described here, but also exhibit a number of contrasting traits, including hyperactive, lean males, which the Spiegelman group attributed to a neurological defect. Kelly and colleagues speculate on possible causes for the differences in the results of the two studies, but only direct comparison of both mouse models will explain the inconsistencies.



Publication: (2005) A New Role for a Protein Involved in Energy Metabolism. PLoS Biol 3(4): e133.
On the web: Print PDF (35K) 

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030133

Published: March 15, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)