RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Anemia treatment may be a double-edged sword

Jan 30, 2008 - 5:00:00 AM
Cancer patients, who often take erythropoietin for anemia, face a similar potential risk, says Smith. Since erythropoietin has the potential to make blood vessels in tumors grow, it could make tumors worse, although a clinical trial is required to know if this is true in humans.

 
[RxPG] Erythropoietin has so far been known to doctors as a hormone that boosts red-blood-cell production. Now, a mouse study led by Lois Smith, MD, PhD, an ophthalmologist at Children's Hospital Boston, shows it also keeps blood vessels alive and growing in the eye. The findings not only add a new function to the hormone, but also give doctors a reason to pause before prescribing it to patients with diseases affected by abnormal blood-vessel growth, such as retinopathy and cancer.

The study, published in the February issue of the Journal of Clinical Investigation (online January 24), also found that whether the hormone is a risk or benefit depends on the timing of administration.

Smith and first author Jing Chen, PhD, worked in mice with retinopathy, an eye disease that begins when healthy blood vessels nourishing the retina die. Numerous vessels then grow in, but they are deformed. Ultimately, the deformed vessels may pull the retina off the back of the eye, causing blindness.

The researchers measured erythropoietin produced in the retina as the disease progressed. Production was 3 to 10 times below normal during early-stage retinopathy, when healthy blood vessels died, and 12 to 33 times above normal during late-stage retinopathy, when deformed blood vessels grew into the retina. The researchers concluded that erythropoietin helps blood vessels survive and grow in the retina, with effects that may be healthy or harmful.

Next, the team examined whether giving erythropoietin could treat retinopathy. They injected erythropoietin into the bloodstream either early, as the mice lost healthy blood vessels, or later, when deformed blood vessels began to invade--then compared them with untreated mice.

Boosting erythropoietin early slowed the disease. The mice lost half as many healthy blood vessels, causing about 30 percent fewer deformed vessels to grow in. Raising erythropoietin levels later, when deformed blood vessels were present, appeared to accelerate the disease--slightly more deformed blood vessels grew in.

If similar effects are found in humans, and its use is properly timed, then giving erythropoietin early could slow loss of healthy blood vessels in retinopathy, says Smith. Right now, there is very little out there to treat blood vessel loss in patients with retinopathy. However, further studies on the restoration of normal levels of erythropoietin are needed to translate these results to patients.

In other diseases, like cancer, in which doctors need to slow blood vessel growth, the hormone could be blocked, although clinical trials would need to confirm this idea, she adds.

But given at the wrong time, erythropoietin may make blood vessels grow in an unhealthy way, says Smith. For example, because it boosts red blood cells, erythropoietin is often prescribed to premature babies and diabetic adults for anemia. Some of these patients also have retinopathy. Giving the hormone at the wrong time might help anemia, but worsen the eye disease.

We're not saying, 'don't do it.' We're saying, 'think about it,' says Smith. Physicians should look at the state of the eye before giving erythropoietin to patients with retinopathy. They should consider not giving it to patients with full-blown retinopathy, in which abnormal vessels are present, because our work suggests it may accelerate the disease. However, if a patient is early on in the disease, then our work suggests erythropoietin may be beneficial.

Cancer patients, who often take erythropoietin for anemia, face a similar potential risk, says Smith. Since erythropoietin has the potential to make blood vessels in tumors grow, it could make tumors worse, although a clinical trial is required to know if this is true in humans.

Overall, Smith says her mouse studies are a reason for doctors to think and researchers to investigate, not for patients to panic.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)